
Performance Evaluation 79 (2014) 134–145

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Enhanced cluster computing performance through
proportional fairness
Thomas Bonald a,∗,1, James Roberts b,1

a Télécom ParisTech, Paris, France
b IRT-SystemX, Paris-Saclay, France

a r t i c l e i n f o

Article history:
Available online 10 July 2014

Keywords:
Cluster computing
Multi-resource sharing
Proportional fairness
Dominant resource fairness

a b s t r a c t

The performance of cluster computing depends on howconcurrent jobs sharemultiple data
center resource types such as CPU, RAM and disk storage. Recent research has discussed
efficiency and fairness requirements and identified a number of desirable scheduling ob-
jectives including so-called dominant resource fairness (DRF). We argue here that propor-
tional fairness (PF), long recognized as a desirable objective in sharing network bandwidth
between ongoing data transfers, is preferable toDRF. The superiority of PF ismanifest under
the realisticmodeling assumption that the population of jobs in progress is a stochastic pro-
cess. In random traffic the strategy-proof property of DRF proves unimportant while PF is
shown by analysis and simulation to offer a significantly better efficiency–fairness tradeoff.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider a cluster of servers, exclusively reserved for executing a certain class of jobs, as a set of distinct resource
pools. The resources in question include CPU, RAM, disk space and I/O bandwidth, for instance. A job must execute a certain
number of tasks, each task requiring a given quantity of each type of resource. An example of this type of computing envi-
ronment and its workload are described by Reiss et al. [1]. Each task has its own particular requirements profile specifying
how much of each resource must be reserved: some tasks require proportionally more CPU than RAM, others require pro-
portionally more RAM than I/O bandwidth, etc. The issue at hand is how a central scheduler should initiate and run tasks
in parallel to fairly and efficiently share cluster resources between jobs. We argue in this paper that such resource sharing
should realize the objective of Proportional Fairness (PF), that is, it shouldmaximize the sum over jobs of logarithms of their
number of tasks.

The multi-resource sharing problemwas formulated in a recent paper by Ghodsi et al. [2] under the simplifying assump-
tion that resource pools are homogeneous and infinitely divisible between jobs. All tasks of a given job are assumed to have
identical profiles and, rather than allocating resources to discrete tasks, a central scheduler is supposed to assign shares of
each resource in proportion to the task profile. Sharing objectives are expressed in terms of a number of desirable properties.
In particular, it is required that allocations be strategy-proof in the sense that the owner of a job cannot gain a bigger share
by lying about its actual task profile. The authors of [2] show that this property is not satisfied bymany otherwise intuitively
appealing allocations. They proceed to define an original strategy-proof allocation called Dominant Resource Fairness (DRF)
and explain how this can be realized.

∗ Corresponding author.
E-mail addresses: thomas.bonald@telecom-paristech.fr (T. Bonald), james.roberts@irt-systemx.fr (J. Roberts).

1 The authors are members of the LINCS, Paris, France. See www.lincs.fr.

http://dx.doi.org/10.1016/j.peva.2014.07.009
0166-5316/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.peva.2014.07.009
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2014.07.009&domain=pdf
mailto:thomas.bonald@telecom-paristech.fr
mailto:james.roberts@irt-systemx.fr
http://www.lincs.fr
http://dx.doi.org/10.1016/j.peva.2014.07.009


T. Bonald, J. Roberts / Performance Evaluation 79 (2014) 134–145 135

Other authors have since come upwith alternative strategies, based on different notions of fairness (e.g., [3,4]), or adapt-
ing DRF to account for more realistic cluster constraints (e.g., [5–7]). Gutman and Nisan [8] situate proposed fairness ob-
jectives like DRF [2] and ‘‘no justified complaints’’ [3] in a common economics framework and provide efficient polynomial
time algorithms.

We believe the economics literature cited in [8] does not in fact constitute an appropriate background for modeling clus-
ter resource sharing. This is because it completely ignores the dynamics of job arrivals and completions that characterize
cluster workload [1]. These dynamics have an obvious impact on job completion times and interact closely with the ap-
plied allocation algorithm since a job finishes more or less quickly depending on the resources it is allocated. The notion of
strategy-proofness must be revisited to account for the impact of false user requirements on the process of jobs in progress
and their expected performance.

In advocating PF we draw on our understanding of bandwidth sharing performance in networks. PF was defined by Kelly
et al. [9] as the bandwidth allocation that maximizes the sum of logs of flow rates, arguably thus realizing greater social
welfare than alternative allocations like max–min fairness. We consider rather the impact of the sharing objective on flow
completion times in dynamic traffic. In wired networks, it turns out that completion times are not highly dependent on the
type of fairness imposed and DRF (equivalent here to max–min fairness) and PF have similar performance [10]. In wireless
networks, on the other hand, the radio resource is measured in time slots per second rather than bit/s with the achievable
bit rate per time slot depending significantly on user position. Sharing a channel equally in time, as realized in HDR/HSDPA
systems for instance, actually corresponds to PF sharing in terms of bandwidth. In a mixed wired/wireless network, PF
realizes a significantly more favorable efficiency–fairness tradeoff than max–min fairness [11].

To compare PF and DRF in dynamic traffic we adopt a simple Markovian traffic model assuming Poisson job arrivals and
exponential job sizes. This simplifies analysis and clarifies the respective tradeoffs realized by the two allocation approaches.
Simulation and analytical results confirm that PF performs significantly better than DRF. Given known insensitivity proper-
ties of fair resource sharing, we are confident that PF would be equally preferable under a more realistic traffic model [10].

In addition to discussing ideal sharing of infinitely divisible resources, Ghodsi et al. show how to approximately realize
DRF in practice accounting for discrete, finite-size tasks. The scheduler algorithm preferentially launches tasks of the ‘‘most
deprived’’ job. This is the job whose current share of its dominant resource is smallest. PF can be implemented similarly on
re-defining ‘‘most deprived’’ in terms of the ideal shares determined for that allocation objective. The complexities of PF and
DRF algorithms are similar and hardly constitute an implementation issue since the number of resource types to be shared
is typically very small.

In the next section we define DRF and PF and demonstrate their respective sharing properties with respect to a static job
population. We consider dynamic sharing in Section 3 assuming a fluid model where resources are infinitely divisible. The
task-by-task implementations of DRF and PF are compared in Section 4. Finally, related work is discussed in Section 5 before
we conclude.

2. Multi-resource sharing

We consider howmultiple resources should be shared assuming a static population of jobs, each with a particular profile
of per-task requirements. We adopt a fluid model where pools of resources are assumed infinitely divisible and compare
two allocation strategies: dominant resource fairness (DRF) and proportional fairness (PF).

2.1. The fluid model

We consider J infinitely divisible pools of resources of respective capacities Cj, for j = 1, . . . , J , to be shared by n jobs
indexed by i. Each task of job i requires Aij units of resource j. Denoting by ϕi the number of ongoing tasks of job i, we have
the capacity constraints:

n
i=1

ϕiAij ≤ Cj,

for j = 1, . . . , J . In the fluid model, we assume tasks are infinitesimally small and jobs can run a sufficiently large number of
them to attain a given resource allocation. It then makes more sense to normalize resource capacities to 1 with aij = Aij/Cj
representing fractional requirements. The (now) real numbers ϕ1, . . . , ϕn are then considered as task volumes satisfying
capacity constraints:

n
i=1

ϕiaij ≤ 1, (1)

for j = 1, . . . , J . The product ϕiaij is the fraction of resource j allocated to job i. We also write capacity constraints (1) in
matrix form ϕa ≤ 1, where inequality is understood component-wise.

We say that resource j is saturated if the corresponding capacity constraint is attained, i.e., if


i ϕiaij = 1. Let ai denote
the vector whose jth component is aij. We say job i needs resource j if aij > 0 and we assume each job needs at least one
resource. The dominant resource of job i is that for which the normalized requirement aij is largest.



Download English Version:

https://daneshyari.com/en/article/462968

Download Persian Version:

https://daneshyari.com/article/462968

Daneshyari.com

https://daneshyari.com/en/article/462968
https://daneshyari.com/article/462968
https://daneshyari.com

