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a b s t r a c t

In this paper we investigate coupling from the past (CFTP) algorithms for closed queueing
networks. The stationary distribution has a product form only in a very limited number
of particular cases when queue capacity is finite, and numerical algorithms are intractable
due to the cardinality of the state space. Moreover, closed networks do not exhibit any
monotonic property enabling efficient CFTP. We derive a bounding chain for the CFTP
algorithm for closed queueing networks. This bounding chain is based on a compact
representation of sets of states that enables exact sampling from the stationary distribution
without considering all initial conditions in the CFTP. The coupling time of the bounding
chain is almost surely finite, and numerical experiments show that it is close to the coupling
time of the exact chain.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

One reason for the popularity of Markovian representations of queueing networks is that they admit a product-form
stationary distribution under general conditions. This structure is no longer guaranteed when the queues have a finite
capacity, so that an exact analysis may not be computationally tractable. When the stationary distribution cannot be
computed then we may turn to approximations or simulation.

This paper concerns simulation, with a focus on stopping criteria. The asymptotic variance appearing in the Central
Limit Theorem has been the most common metric to devise stopping rules, while mixing times have become a standard
alternative [1,2]. Unfortunately, there are no generic and tractable techniques to compute or bound either the asymptotic
variance or the mixing time for non-reversible Markov chains.

In the 1990s, Propp and Wilson introduced a method for sampling a random variable according to the stationary distri-
bution of a finite ergodic Markov chain [3]: the coupling from the past (CFTP) algorithm. The CFTP algorithm automatically
detects and stops when the sample has the correct distribution. In this way it is possible to generate i.i.d. samples from the
chain, and the asymptotic variance of the resulting simulator is the standard variance of the random variable whose mean
we wish to estimate.

The number of steps required in the CFTP algorithm is proportional to the coupling time of the chain, but the time
complexity strongly depends on the complexity of the one-step transition of the chain. In particular, for closed queue-
ing networks, no efficient CFTP method has been proposed previously, with the exception of networks with a product form
distribution [4].

Different techniques can be used to efficiently compute one step of the CFTP algorithm: the simplest solution, for
monotoneMarkov chains, is to compute theminimal andmaximal trajectories only [3]. ForMarkov chainswith nomonotone
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representations, new techniques have been developed to approximate each step of the computation, at the cost of slightly
increasing the number of iterations of the algorithm. Bounding chains have been constructed to detect coalescence for state
spaces with lattice structure [5,6], or for models with short range local interactions, such as interacting particle systems [7].
For applications of [5] to queueing networks, see for instance [8,9].

The main difficulty with closed queueing networks is that the customer population is constant. This imposes a global
constraint on the model, so the approach of [5] cannot be applied directly. Without monotonicity, the complexity of one
iteration of the original CFTP algorithm by Propp and Wilson [3] depends on the cardinality of the state space, which is
exponential in the number of queues.

In this paper, we develop an effective CFTP algorithm for closed queueing networks. Our main contribution is a new
technique for constructing bounding chains, which is adapted to a large class of Markovian closed queueing networks. It is
based on a compact representation for sets of states, using diagrams that we introduce in Section 3. We perform the CFTP
algorithm on the space of the diagrams, for which the one-step transition is simpler to compute than using the original state
space. For the diagrams, one iteration in the CFTP algorithm can be computed in O(KM2) time, as we discuss in Section 3.2.3.

The paper is organized as follows. In Section 2 we present the queueing model and discuss the solutions that have been
proposed in the literature for special cases. The analysis is based on a diagram representation introduced in Section 3. This is
used in Section 4 to prove that the CFTP algorithm terminates in finite time, almost surely. Finally, Section 5 contains results
from numerical, comparing our algorithm with the classical CFTP in terms of the number of iterations. Note that classical
CFTP can be used only for very small models, as its one-step transition depends on the cardinality of the state space. Final
remarks and conclusions are contained in Section 6.

2. Model and background

2.1. Presentation of the model

We denote by N the set of non-negative integers and by ei ∈ Nk the vector such that (ei)j = 1 if i = j and 0 otherwise.
Consider a closed network of ·/M/1/C queues with M customers. We denote by Q = {1, . . . , K} the set of queues. For

i ∈ Q , µi is the service rate and Ci the capacity of queue i. After a service in queue i, a customer is routed to queue j with
probability pi,j, independently of the current state and past evolution of the network. If queue j is full, the customer is blocked
at queue i for another service time. Let P = (pi,j)i,j∈Q denote the routing probability matrix; for all i, j ∈ Q , pi,j ≥ 0 and for
all i ∈ Q ,


j∈Q pi,j = 1.

The evolution of this network follows a continuous time Markov chain on the state space

S =


x = (x1, x2, . . . , xK ) ∈ NK

:

K
i=1

xi = M and 0 ≤ xi ≤ Ci, ∀i ∈ Q


.

The upper bound for |S| is given by


K+M−1
K−1


; this is the exact value for |S| if all queues have infinite capacity.

The topology of the network can be represented by a directed graph G = (Q , R) where R = {(i, j) : pi,j > 0}. As we
consider closed networks, without loss of generality, we can assume that G is strongly connected.

For (i, j) ∈ R, we denote by ti,j : S→ S the function that describes routing of a customer from queue i to queue j:

ti,j(x) =

x− ei + ej if xi > 0 and xj < Cj,
x otherwise.

This transition does not affect the state if queue i is empty or if queue j is full.
We consider a discrete timeMarkov chain, obtained using uniformizationwith constant

K
i=1 µi. This chain has the same

state space as the continuous time chain.
A functional representation of this discrete time Markov chain can be given using functions ti,j and routing matrix P .

Denote by (Un)n≥1 an i.i.d. sequence of random variables with distribution

P(U1 = (i, j)) =
µi

j∈Q
µj

pi,j.

Define F : S× R as

F(x, (i, j)) = ti,j(x).

Let X0 be the initial state, independent of (Un)n≥1, and Xn+1 = F(Xn,Un+1), n ∈ N.

2.2. Coupling from the past algorithm

The coupling from the past (CFTP) algorithm has been first introduced in 1996 by Propp and Wilson [3]. The key idea is
to sample a value at time 0 of a trajectory that starts arbitrary far in the past.



Download	English	Version:

https://daneshyari.com/en/article/462969

Download	Persian	Version:

https://daneshyari.com/article/462969

Daneshyari.com

https://daneshyari.com/en/article/462969
https://daneshyari.com/article/462969
https://daneshyari.com/

