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a b s t r a c t

For large sparse saddle point problems, Jiang and Cao studied a class of local Hermitian and
skew-Hermitian splitting (LHSS) iteration methods (see M.-Q. Jiang, Y. Cao, On local
Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point
problems, J. Comput. Appl. Math. 231 (2009) 973–982). In this paper, we generalized these
methods and propose a class of generalized local Hermitian and skew-Hermitian splitting
(GLHSS) iteration schemes for solving the non-Hermitian saddle point problems. We derive
conditions for guaranteeing the convergence of these iterative methods. With different
choices of the parameter matrices, the generalized iterative methods lead to a series of
existing and new iterative methods. Numerical experiments for a model Stokes problem
are provided, further show that the new iteration methods are feasible and effective.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

We consider the solution of systems of linear equations of the block 2 � 2 form:

A B�

�B 0

� �
x

y

� �
¼

f

g

� �
; or Au ¼ b; ð1:1Þ

where A 2 Cn�n is non-Hermitian matrix and its Hermitian part H ¼ 1
2 ðAþ A�Þ is positive definite matrix, B 2 Cm�n is a matrix

of full row rank, x; f 2 Cn; y; g 2 Cm, and m 6 n. These assumptions guarantee the existence and uniqueness of the solution of
linear systems (1.1); see [1–5]. The linear system (1.1) is called the non-Hermitian saddle point problems. We further assume
that the matrices A and B are large and sparse; see [6–8].

The system (1.1) arise in a variety of scientific computing and engineering applications, including computational fluid
dynamics, constrained and weighted least-squares problem, constrained optimization, image reconstruction and registra-
tion, parameter identification problems, mixed finite element approximations of elliptic PDEs and Stokes problems, and
so on; see [9,6,8] and references therein.

A large variety of methods for solving linear systems of the form (1.1) can be found in the literature, including direct and
iterative methods. For example, Uzawa methods [4,2,10–14], preconditioned Krylov subspace iteration methods [15,8,16–18],
Hermitian and skew-Hermitian splitting (HSS) method as well as its accelerated variants [19–21,3,22,23], and restrictively
preconditioned conjugate gradient methods [15,24–26]. We refer to a comprehensive survey [8] for algebraic properties
and iterative methods for saddle point problems.
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In this paper, we shall focus on the numerical iterative solution for the non-Hermitian saddle point problem and assume
that the Hermitian part H ¼ 1

2 ðAþ A�Þ of the non-Hermitian matrix A is dominant, and get a generalized local Hermitian and
skew-Hermitian splitting (GLHSS) method for the non-Hermitian saddle point problem. By choosing the involved parameters
and parameter matrices, we can recover many known iteration methods and obtain many new ones. The convergence of
these methods are also discussed in depth.

The paper is organized as follows. In Section 2, we propose the GLHSS method for non-Hermitian saddle point problems,
and deduce the condition for guaranteeing its convergence. In Section 3, we derive several algorithms by different choices of
the parameter matrices. Numerical experiments for a model Stokes problem are presented in Section 4, to shown the
feasibility and effectiveness of new methods. Finally, in Section 5 we draw some conclusions.

2. Generalized iteration method

We consider the following special matrix splitting:

A B�

�B 0

� �
¼

Q 1 þ H 0
�Bþ Q 3 Q2

� �
�

Q1 � S �B�

Q 3 Q 2

� �
;

where H ¼ 1
2 ðAþ A�Þ; S ¼ 1

2 ðA� A�Þ are the Hermitian and the skew-Hermitian parts of A, respectively. The matrix B still has
full row-rank, Q 1 2 Cn�n is a Hermitian positive semi-definite matrix, Q2 2 Cm�m is a Hermitian positive definite matrix, and
Q 3 2 Cðm�nÞ is arbitrary matrix. Then we have the following GLHSS iteration scheme for solving the non-Hermitian saddle
point problems (1.1):

Q 1 þ H 0
�Bþ Q3 Q 2

� �
xnþ1

ynþ1

� �
¼

Q 1 � S �B�

Q 3 Q2

� �
xn

yn

� �
þ

f

g

� �
:

The corresponding computational process is described below.

Algorithm 2.1. GLHSS iteration method

xnþ1 ¼ xn þ ðQ 1 þ HÞ�1ðf � Axn � B�ynÞ;
ynþ1 ¼ yn þ Q�1

2 ððB� Q 3Þxnþ1 þ Q 3xn þ gÞ:

(
ð2:1Þ

It is evident that the iteration method given above is a more generalized case of the local Hermitian and skew-Hermitian
splitting (LHSS) and the modified LHSS (MLHSS) iteration methods used in [23]. Thus, the LHSS and MLHSS methods are both
special cases of the GLHSS method.

In the following, we deduce the convergence of the GLHSS iteration method. Note that the iteration matrix of the GLHSS
iteration method is:

C ¼
Q1 þ H 0
�Bþ Q 3 Q 2

� ��1 Q 1 � S �B�

Q 3 Q 2

� �
: ð2:2Þ

Let qðCÞ denote the spectral radius of the iterative matrix C. Then the GLHSS iterative scheme (2.1) converges if and only
if qðCÞ < 1, see [4,2,27]. Let k be an eigenvalue of C and ðu�;v�Þ� be its corresponding eigenvector, where u 2 Cn and v 2 Cm.
Then we have:

Q 1 � S �B�

Q3 Q 2

� �
u

v

� �
¼ k

Q 1 þ H 0
�Bþ Q 3 Q2

� �
u

v

� �
; ð2:3Þ

or equivalently,

ðkH þ Sþ ðk� 1ÞQ 1Þuþ B�v ¼ 0;
ð1� kÞQ 3 þ kBð Þuþ ð1� kÞQ 2v ¼ 0:

�
ð2:4Þ

To obtain a convergence condition, we first give some lemmas to be used later.

Lemma 2.1 [2]. Both roots of the complex quadratic equation k2 þ /kþu ¼ 0 have modulus less than one if and only if
j/� �/uj þ juj2 < 1, where �/ denotes the conjugate complex of /.

Lemma 2.2 [23]. If S is a skew-Hermitian matrix, then i � S (i is the imaginary unit) is a Hermitian matrix and u�Su is a purely
imaginary number or zero for all u 2 Cn. In particular, if S is a skew-symmetric matrix, then u�Su ¼ 0 for all u 2 Cn.

Lemma 2.3. Let A be a non-Hermitian matrix with the positive definite Hermitian part H ¼ 1
2 ðAþ A�Þ, and the matrix B have full

row-rank. Let the matrix C be defined as in (2.2). If k is an eigenvalue of C, then k – 1.
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