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a b s t r a c t

A mathematical model is proposed to study the role of instantaneous nutrient recycling on
the plankton ecosystem. In this model, we include three state variables namely, nutrient
biomass, phytoplankton and zooplankton population with Holling type II response func-
tion for the population density transformation from phytoplankton to zooplankton. It is
obtained that the local stability of different equilibrium depends on the nutrient supply
rate to the phytoplankton for the temporal system and also existence of the oscillatory
behavior of the temporal system is established by using Bendixson–Dulac criteria. In the
spatiotemporal model, we also determine the diffusion-driven instability condition, with
the numerical support for the effect of diffusivity coefficients on chaotic behavior of the
system. Furthermore, we obtained the instability condition for linear and no-linear system
from the higher order stability analysis. Finally, we analyze the time evaluation pattern for-
mation of the spatial system. This shows that it is useful to use the reaction–diffusion sys-
tem to reveal the spatial dynamics in the real world.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Pollution of fresh water in marine system by anthropogenic sources has become a concern over the last decades [1–3].
Researchers have found out that each tea spoon of ocean water contains 10 million to 100 million of viruses. Viral infection
is known to cause a cell lysis in phytoplankton [4]. The measurable level of toxin due to harmful species is responsible for the
bloom dynamics. In coastal area, viral disease can infect bacteria and phytoplankton [5]. Virus like particles are found in nat-
ural phytoplankton community [4,6]. These virus like particles have also been found in many eukaryotic algae [7]. The par-
asite modifying behavior has also been exhibited by the infected individuals of host population. This may happen by
reducing stamina, disorientation and altering responses in infected population [8]. Killifish (Fundulus parvipinnis) tends to
come closer to the surface of the sea after being infected, which make them more vulnerable to predation by birds [9].
Viruses have been held responsible for the collapse of Emiliania huxleyi bloom in mesocosms [10,6]. Since, viruses have ma-
jor role in shaping the dynamics of plankton, so many researchers have developed and analyzed different mathematical
models [11–13].

The dynamics of rapid (or massive) increase or decrease of plankton populations is an important subject in marine plank-
ton ecology [14]. Generally high nutrient levels and favorable conditions play a key role in rapid or massive growth of algae
and low nutrient concentration as well as unfavorable conditions limits their growth. The water must contain high levels of

0096-3003/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2012.02.052

⇑ Corresponding author.
E-mail addresses: jdhar@iiitm.ac.in (J. Dhar), randhirsng@gmail.com (R.S. Baghel), anujsumati@gmail.com (A.K. Sharma).

Applied Mathematics and Computation 218 (2012) 8925–8936

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc

http://dx.doi.org/10.1016/j.amc.2012.02.052
mailto:jdhar@iiitm.ac.in
mailto:randhirsng@gmail.com
mailto:anujsumati@gmail.com
http://dx.doi.org/10.1016/j.amc.2012.02.052
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


inorganic nutrients (nitrogen and phosphorus) for the algae to feed on and also water temperature and salinity levels must
be within a certain range to be conducive to planktonic growth [15]. A frequent outcome of planktonic bloom formation is
massive cell lysis and rapid disintegration of large planktonic populations. This is closely followed by an equally rapid in-
crease in bacterial numbers, and in turn by a fast deoxygenation of water, which could be detrimental to aquatic plants
and animals. These blooms also reduce the chance of growth for aquatic vegetation. Hence, studies regarding the pattern
of blooms are necessary towards this serious ecological problem [16–18]. Plankton pattern formation is dependent on the
interplay of various physical (light, temperature, hydrodynamics) and biological (nutrient supply, predation) factors [19–
21]. In nature, it has been observed that the direction of motion of plankton patches does not always coincide with that
of the water [22], and as the spatial scale increases above approximately 100 m, phytoplankton behaves successively less
like a simple passive quantity distributed by turbulence [23,24]. Similarly, the spatial variability of zooplankton abundance
differs essentially from the environmental variability on scales of less than a few dozen kilometers [25]. This indicates that
biological factors play an essential role in the emergence of plankton patchiness.

Biological motivation for chemostat-type interactions models have been studied by [26–28] among others. Mathematical
analysis of chemostat-type competition and plankton ecosystem have been carried out in [29,30] and global dynamics of a
chemostat model with differential death rates was studied by Wolkowicz and Lu [31].

Keeping in view the above discussion, we have studied the role of virus in phytoplankton, which render phytoplankton
more vulnerable to predation by zooplankton, by developing two chemostat models of phytoplankton and zooplankton spe-
cies (see Fig. 1).

In Section 2, we have developed mathematical model and analyzed dynamical behavior of chemostat model of phyto-
plankton and zooplankton species. In Section 3, proposed the model with diffusion with drive the instability condition ana-
lytic as well as numerically and studied the one and two-dimensional space systems. In Section 4, we have studied the higher
order stability analysis and finally in Section 5, we summarize our results and discuss the relative importance of different
mechanisms for the onset of spatiotemporal chaos and pattern formation.

2. Mathematical model

Motivated from the work of Ruan [30], on zooplankton–phytoplankton–nutrient models with instantaneous nutrient
recycling, we purpose a mathematical model, taking NðtÞ; PðtÞ and ZðtÞ are nutrient biomass, phytoplankton and zooplank-
ton population densities at any time t, respectively. Again, d1 and d2, are the per capita death rate of phytoplankton and zoo-
plankton, respectively. In a natural plankton system, water flowing into the system brings in nutrient and outgoing water
carries away nutrient from the system. Further, it is assumed that water is carrying away nutrient, phytoplankton along with
flow with the same rate. Here, N0 is the constant nutrient input concentration at any time and D is the water influx rate or
washout rate along with nutrient, phytoplankton and zooplankton. The nutrient uptake and grazing rate of phytoplankton by
zooplankton is assumed to follow law of mass action. Let a1 be the initial nutrient uptake rate by phytoplankton and c1 is the
grazing rate of phytoplankton by zooplankton. The conversional rate of the nutrient into phytoplankton is given by a2 and c2

is the conversional rate of phytoplankton into zooplankton. Again, the positive feedback term’s ð1� a2Þa1NP; ð1�c2Þc1PZ
aþP ; d1P

and d2Z will be recycled into nutrients, i.e., all the losses are being replenished into nutrients. Model equations for the above
system are given by

dN
dt
¼ DðN0 � NÞ � a1NP þ ð1� a2Þa1NP þ q
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Fig. 1. Schematic diagram.
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