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a b s t r a c t

Often in a real world system with a fairly large population, members are not individually
traceable for various reasons. As a result, the relationship between a member’s behavior
and the system’s behavior is quite hard to understand. In this paper, we focus on a
fundamental problem in such a system: the relationship between its population size and
the life-time distribution for its members. We answer two questions:

(A) If the life-time distribution is known and the timeswhenmembers join are observable,
how do we best estimate the population size?

(B) If the population size can be observed accurately, how do we estimate the unknown
life-time distribution for members?

In the paper we focus on (B), using the results of (A) as a basis.
We model the system as a G/GI/∞ queue with incomplete information, where jobs,

once entering the queue, are no longer tracked. With this model, the population size is
the number of jobs in the queue and the life times of members are the service times of
the jobs. The problem (A) is to estimate the number of jobs in the queue, with known
arrival times and a known service-time distribution.We show that, in terms ofmean square
error, the best deterministic estimator for the (stochastic) number of jobs in the system can
be constructed using the survival function of the service-time distribution. The problem
(B) is to estimate the unknown service-time distribution in a G/GI/∞ queue where the
number of jobs are observable. We demonstrate that the service-time distribution can
be inferred indirectly from continuous observations of the number of jobs in the queue,
and then propose a few easy-to-implement algorithms. Using only a limited amount of
memory, these on-line, streaming algorithms continuously refine their results which, over
time, converge to the true service-time distribution.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Large populations are characteristic of many real-world systems at different temporal and spatial dimensions. Examples
include viewer population in a big stadium during a major sporting event, customer population in a big mall or at a retail
shop, viewer population during prime-time slots on television, and user population at a popular web-site. Such large
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population systems are characterized by dynamically changing population size due to frequent incoming and outgoing
customers. Knowledge of system parameters like sojourn time of customers (jobs), population size, and waiting time in
such systems, is important for planning operations and designing business strategies and policies targeting the system
population. For example, duration of advertisements displayed on billboards in stadiums, placement of consumer goods
in shops, embedding of commercial breaks on television can all be tied to the sojourn time (life time) of customers in the
system. The knowledge of the number of customers is a measure of the system popularity like ‘‘hotness’’ of web-sites and
target rating points of TV shows and is useful for revenue management during advertisement slot bidding.

Estimation of such system parameters usually requires monitoring the behavior of individual customers. An important
problem with such large-scale systems is that often it is infeasible to track each individual either due to cost and scalability
constraints associated with the monitoring system or due to other concerns like anonymity and privacy, etc. However
aggregate statistics are much easier to obtain; for example, the total number of customers at any time is known by just
counting the total arrivals and departures. Without the need for tracking each individual, estimation techniques based on
easy-to-observe aggregatemeasures are thereforemuch desired for large population systems. For example, such techniques
can be used for improving revenue by devising advertising strategies which exploits the population size in any systemwith
large population with continuous arrivals and departures like stadiums, road-traffic, and mobile zones. Earlier works adopt
this position, e.g., for road traffic [1] and for industrial production [2].

In this paper, we model such a large population system as a G/GI/∞ queue, and study non-parametric estimation of
different statistics of the queue when only partial information is available. While we make no assumptions on the arrival
process, the service times are assumed to be independent and identically distributed (IID) random variables. The stochastic
process N(t) (number of busy servers or queue length) of any infinite-server queue can be constructed by just knowing
the arrival process {Ai} and the service time process {Xi} of each job. The arrival process, on the other hand, can just be
constructed by knowing N(t), as the jump epochs in N(t) correspond to arrival times of jobs. Note that, since we are
considering an infinite-server system, the sojourn time of a job in the system is same as its service time.

Specifically, we pose two estimation questions for G/GI/∞ type queue:

• Given the arrival process and the service time distribution of jobs, what is the best deterministic estimator for N(t)?
• Given only N(t), what is the best estimator for service time distribution?

Apart from answering the theoretical questions on the efficiency of estimators for N(t) and service-time distribution, an
important contribution of our work is the development of simple, practical algorithms for the real-time estimation of the
service-time distribution in G/GI/∞. These on-line, streaming algorithms operate on bounded state space with each new
iteration requiring a fixed amount of computational time.

The paper is organized as follows. Section 2 dealswith the problem of estimating the number of jobs in aG/GI/∞ system.
In Section 3, the inverse problem of estimating the service-time distribution in a G/GI/∞ system is studied and efficient
on-line streaming algorithms are developed and analyzed. Numerical results on the algorithms are presented in Section 4.
Section 5 reviews the literature on parametric and non-parametric estimation in queues. Finally, we conclude in Section 6.

2. Estimating the number of jobs in a G/GI/∞

In this section, we consider the problem of estimating the number of jobs in a G/GI/∞ system, where exact arrival
times are known. The service times are independent, identically distributed (IID) random variables denoted by X whose
Cumulative Distribution Function (CDF) is denoted by F(x) := Pr [X ≤ x]. We assume that this distribution is known a
priori, although the exact service times of individual jobs are not.

2.1. Preliminaries

Let IX (t), a stochastic process solely determined by the non-negative random variable X , be the indicator function which
equals 1 for 0 ≤ t < X and 0 otherwise. Then, for a job iwith service time Xi arriving at time τi, the binary-valued stochastic
process IXi(t − τi) indicates if the job Xi is in the system at time t . The expectation of IX (t) is given by:

E [IX (t)] =

Pr [X > t] = 1− F(t), (t ≥ 0)

0, (t < 0)


=: F̄(t),

where F̄(t) is called the survival function of X . Note that the survival function F̄(t) defined here is slightly different from
usual: for t < 0, we set F̄(t) to be 0, instead of 1− F(t) which is equal to 1 for a negative t .

The stochastic process IX (t) can be estimated by a deterministic real-valued function φ(t), and it is easy to show that,
with φ = F̄ the expected square estimation error is minimized (among the class of all real-valued functions) for every t:

min
φ

E

(IX (t)− φ(t))2


= E


IX (t)− F̄(t)

2
≡ σ 2
[IX (t)] = F̄(t)− F̄ 2(t), (1)

where σ 2
[Y ] denotes the variance of a random variable Y .
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