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a b s t r a c t

The optimal treatment strategies with an age-structured model of HIV infection are inves-
tigated. The age-structured model allows for variations in the virion production rate and
the death rate of infected T cells as a function of age, which is the length of time since infec-
tion. The optimal therapy protocol is derived by formulating and analyzing an optimal con-
trol problem and the existence of solutions to the optimal control problem is established.
The optimal treatment strategy is obtained by solving the corresponding optimality system
numerically. It is demonstrated by numerical simulations that the dynamic treatment
strategy delays the time to reach the peak viral load and reduces the viral load. Moreover,
we propose that optimal therapy protocols should be changed according to different viral
production rates and death rates of infected T cells.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The human immunodeficiency virus (HIV) causes acquired immune deficiency syndrome (AIDS). The viral infection is
characterized by a severe impairment of the immune system and related opportunistic infections. The main target cell of
HIV is the CD4+ T helper cell. Several drugs that substantially decrease morbidity and mortality in HIV-infected patients have
been developed in the last few years. Despite this progress, there is still no treatment protocol that results in clearance of the
HIV from patients. In addition, many complications can arise from long-term drug use. For example, drug-resistant strains of
HIV can appear, resulting in the resurgence of viral loads after their long-term suppression from treatment [17,21]. There are
also a number of harmful side effects from such drug use. Moreover, high drug costs and complicated drug regimens make
effective Highly Active Anti-Retroviral Therapy (HAART) use burdensome for some patients and impossible for others.

A number of researchers have searched for optimal treatment strategies that can decrease virus mutations, pharmaceu-
tical side effects, and complex and expensive medication burdens. The optimal control problems of HIV infection have been
examined by using different types of models and objective functionals [1,2,9,14]. These authors suggested the continuous
optimal treatment schedules that can be found by solving the corresponding optimality systems. B.M. Adams et al. consid-
ered two different kinds of treatment as control functions. One prevents HIV from infecting cells by blocking the integration
of the HIV viral code into the host cell genome and the other prevents infected cells from replication of infectious virus par-
ticles [1,2]. L.M. Wein, et al. used a control theoretic approach for multi-drug therapies with models allowing mutations [27].
An approximating method was employed because of the high dimensionality of the control problem. Feedback control prob-
lems have been explored [3,5,7,23]. In [7], several methods of the stable control of the HIV population were considered by
using an external feedback control term that was analogous to the introduction of a therapeutic drug regimen. The optimal
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feedback control problems and the state estimator problems based on the state dependent Riccati equation (SDRE) approach
for HIV infection were considered in [5].

More recently, substantial progress has been made with on–off treatments, which are also known as structured treatment
interruption (STI). STI has received considerable attention because it may reduce the risk of HIV mutating to strains resistant
to current medication regimens. The STI approach may also reduce the possible long-term toxicity of drugs [1,2,6,15,28]. A
concise summary of clinical STI studies, including protocols and results, is presented in [4]. Some researchers have used a
fixed length, prescribed interruption schedule, whereas others have used viral loads and T-cell measurements from patients
to determine the interruption period [15,22]. There is currently no general agreement on which treatment strategies or inter-
ruption schemes are optimal. One way to consider the optimal STI is to use a mathematical model for HIV infection in con-
junction with control theory. The authors in [1,2] introduced a method called the direct search approach; this method uses
ideas from dynamic programming to obtain an optimal STI treatment.

To date, many mathematical models have been developed to describe the interaction of CD4+ T cells and HIV in the im-
mune system [8,16,19,24]. Some models of HIV infection have used optimal control theory, generally focusing on a system of
ordinary differential equations. However, to our knowledge, optimal control theory based on age-structured models has not
been considered in the identification of an optimal methodology for administering HIV treatment. The proposed age-
structured model in [18] allows for variations in the death rate of infected CD4+ T cells and the production rate of viral
particles. We use this model as constraint equations in the optimal control problem.

The remainder of this paper proceeds as follows. In Section 2, we describe the age-structured HIV model suggested by
Nelson et al. [18]. In Section 3, we present the formulation of the optimal control problem and the corresponding optimality
system. We provide a proof of the existence of an optimal control function. We then derive an optimality system that char-
acterizes the optimal control. In Section 4, we present the numerical results of the continuous optimal therapy by solving the
optimality system. We briefly summarize our efforts and findings in Section 5.

2. Age-structured model

The age-structured model of HIV infection has three state variables: TðtÞ, which represents the number of uninfected
CD4+ T cells at time t; T�ða; tÞ, which represents the number of infected CD4+ T cells structured by the age, a, of their infec-
tion at time t; and VðtÞ, which represents the number of virus particles at time t. A system of two ordinary differential equa-
tions and one first order hyperbolic equation describing the HIV dynamics is given by

dT
dt
¼ s� dTðtÞ � ð1� �ðtÞÞkVðtÞTðtÞ;

@T�

@t
þ @T�

@a
da
dt
¼ �dðaÞT�ða; tÞ;

dV
dt
¼
Z 1

0
PðaÞT�ða; tÞda� cVðtÞ:

ð2:1Þ

In this model, we assume that uninfected T cells are produced at a constant rate, s, and die at a rate, d, per cell. The term
kVT represents the infection process wherein infected cells, T�, are produced by encounters between uninfected target cells,
T, and virus particles, V, with an infection rate constant k. The death rate, dðaÞ, and the virion production rate, PðaÞ, of T� are
assumed to be functions of the age of cellular infection, a, and virions, V, are assumed to be cleared at a constant rate, c. We
also assume da

dt ¼ 1, which means scales for the age infection a and time t are the same. Since a first order hyperbolic equation
is contained in the model, boundary and initial conditions must be introduced that the infected CD4+ T cells of age zero are
created by infection; that is,

T�ð0; tÞ ¼ ð1� �ðtÞÞkVðtÞTðtÞ:

We may also impose the specific initial conditions Tð0Þ ¼ T0; T
�ða;0Þ ¼ T�0ðaÞ, and Vð0Þ ¼ V0. The control term �ðtÞ represents

the effectiveness of the reverse transcriptase inhibitors (RTI), which block new infection. Thus the infection rate, k, is reduced
to ð1� �ðtÞÞk, where 0 6 �min 6 �ðtÞ 6 �max < 1. Here �min and �max represent minimal and maximal drug efficacy, respectively.

Remark 2.1. With the above boundary and initial conditions and a smooth enough control function, we note that there
exists a unique solution to the system (2.1) which remains bounded and non-negative for t > 0 (see [18,26]).

The mathematical model (2.1) contains several constant parameters and function parameters that must be assigned for
numerical simulations. The descriptions and numerical values for the parameters are summarized in Table 1, which are prin-
cipally extracted from the paper authored by Nelson et al. [18]. Since the age of every cell is considered, in general, each cell
will have a different viral production and infected-cell death rate. To represent these rates, we need explicit functional forms
of the viral production kernel, PðaÞ, and the death rate of the infected cells, dðaÞ. According to prior research [12,18], the viral
production kernel can be defined as follows:

PðaÞ ¼ Pmaxð1� exp�bða�d1ÞÞ if a P d1;

0 otherwise;

(
ð2:2Þ
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