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Analytical description of disease propagation on random networks has become one of the
most productive fields in recent years, yet more complex contact patterns and dynamics
have been resorted to numerical study. In this paper, an epidemic model is defined in
which each individual, once infected, has chances to recover from infection at certain rate.
The chance is represented by a parameter q 2 ½0;1�. This model can be viewed as an
interpolation between classical SI model (q ¼ 0) and SIR model (q ¼ 1). We develop a
low-dimensional system of non-linear ordinary differential equations to model the mixed
susceptible-infected (-recovered) SI (R) epidemics on random network with general degree
distributions. Both the final size of epidemics and the time-dependent behaviors are
derived within this simple framework. In addition, we present the exact transmissibility
and the epidemic threshold for this model.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Many infectious diseases spread over networks by contacts between susceptible and infective individuals. Classical early
work in mathematical epidemiology often assumed a homogeneously mixing community of individuals (also called the law
of mass action [1,12]), each having the same susceptibility to disease and the same ability to transmit disease. However, this
rarely reflects true populations, where the number of contacts is highly heterogeneous and each individual only has contact
with a small fraction of the population.

Since the past two decades or so, there has been considerable interest in understanding disease propagation by using ran-
dom networks [2,10,13,14,17,18,23,24,31], which allow for more realistic and accurate capture of heterogeneities compared
with well-mixed models. Some quantities of interest such as epidemic probability and expected final size of epidemics have
been precisely solved in random networks with general degree distributions (namely, configuration models) through bond
percolation theory [6,14,17,19]. The heterogeneity introduced in the network framework, however, makes it rather difficult
to describe the time-dependent properties of an epidemic analytically. Some efforts have been made by using high-
dimensional pair-approximation methods (or moment closure methods) [9,11,26], which in principle ignore the correlations
between the states of nodes (individuals) several steps apart. Alternatively, some researchers adopt approximate approaches
that assume all nodes of the same degree having the same infection probability at any given time [4,20]. Others have
conducted simulation-based studies of epidemic dynamics [8,21,27].

More recently, Volz [29] and Miller [15] introduce a low-dimensional system of non-linear ordinary differential equations
to model susceptible-infected-recovered (SIR) epidemics on random networks assuming infection and recovery occur at con-
stant rates. The calculations account for the effects induced by heterogeneous connectivity and finiteness of degree that are
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missed in standard well-mixed SIR equations. Besides the dynamical properties, the final size of an epidemic is also predicted
in their frameworks. In contrast to the previous moment closure methods [11], the number of equations in the resulting sys-
tem does not grow with the number of different degrees. Rigorous proof of the obtained equations is provided in [7] based on
measure-valued processes.

In the present work, we move a further step beyond this framework by considering more complex susceptible-infected
(-recovered) SI (R) epidemics in random networks, where an infected individual has chances to recover (but not necessarily
certainly) at some rate. We use a parameter q 2 ½0;1� to represent the possibility of recovery. This model can be thought of as
a mix or interpolation between the classical SI model, where no infected individuals can recover, and SIR model, where all
infected ones are recovered eventually. A unique feature of our model is that the three exclusive states (susceptible, infected,
and recovered) can coexist as time t !1, which is more realistic than the pure SIR model.

By introducing a virtual recovered state, eR, we show that it is possible to analyze the dynamics of mixed SI (R) epidemics
spread on configuration models [16,18] using a coupled system of only three ordinary differential equations. The epidemic
growth at any given time as well as its final size are examined in this relatively simple framework, which is less computa-
tionally demanding and amenable to the analytical derivations. A derivation of the transmissibility for our model is provided.
We demonstrate the theoretical results by concrete examples on configuration models including power-law networks and
Poisson random graphs.

The rest of the paper is organized as follows. In Section 2, we present the theoretical framework and give some prelim-
inaries. The network mixed SI (R) dynamics is then developed in Section 3. Section 4 is devoted to the transmissibility and
the epidemic threshold. Finally, we conclude the paper in Section 5.

2. The model and notations

Consider a population consisting of n individuals. Each individual is represented by a node in the network modeled by the
configuration model [16], in which the degree distribution is specified, but the graph is in other respects random.

To define a configuration model network, one specifies the degree distribution by giving the properly normalized prob-
ability pk that a randomly chosen node has degree k. Assign an i.i.d. degree dv drawn from the distribution pk to each node v.
If the sum of degrees is odd, all degrees are reassigned until the sum is even. We then create a set X consisting of dv ‘‘stubs’’ of
edges for each node v. There are

P
vdv stubs in total. A pair of these stubs is then chosen uniformly at random and connected

together to form a complete edge until X is used up. This procedure generates a uniform choice from the ensemble of all net-
works with the specified degree distribution. The resulting network has

P
vdv=2 edges, and is locally tree-like in the limit of

large size n. It has negligible self-loops and multiple edges in the limit of large network size n for degree distributions with
finite mean [18].

We define the probability generating function [24,30] of the degree distribution pk as

GðxÞ ¼
X1
k¼0

pkxk; ð1Þ

where the dummy variable x serves as a place-holder. The mean degree of the network is then given by hki ¼ G0ð1Þ.
Nodes in the network fall into one of three exclusive states: susceptible, infected or recovered. We denote the fraction of

the population in each state at time t by S ¼ SðtÞ; I ¼ IðtÞ and R ¼ RðtÞ, respectively. The dynamics of the disease propagation
can be described as follows. An infected node transmits infection to each of its neighbors independently at a constant rate b.
Thus, a susceptible node becomes infected at rate kb where k is the number of infected neighbors it has. Once infected, with
probability q a node recovers at a constant rate c, whereupon it will never infect any neighbors, and with probability 1� q, it
will remain infected without recovery. Note that if q ¼ 0 the model reduces to the SI model where only two states, suscep-
tible and infected, are possible, while if q ¼ 1 we readily reproduce the SIR model. At first glance, one might imagine that the
above mixed SI (R) model is just a ‘‘slowdown’’ version of standard SIR model with recovery rate qc. This, however, is not
correct because in the pure SIR model with recovery rate qc Ið1Þ ¼ 0, namely, nobody will be in the infected state at the
end of an epidemic, while in the mixed SI (R) model Ið1Þ > 0 as long as q < 1.

Now here comes the trick: we modify the notations by introducing a state of ‘‘virtual recovered’’. The fraction of virtual
recovered node at time t is denoted by eR ¼ eRðtÞ. An infected node becomes virtual recovered with probability 1� q at rate c.
Bearing in mind that virtual recovered nodes are still infectious, the fraction of infectious node altogether at time t now
amounts to IðtÞ þ eRðtÞ. By definition we have Sþ I þ eR þ R ¼ 1. At the end of an epidemic, the fraction of infectious (i.e.,
‘‘infected’’ + ‘‘virtual recovered’’) nodes is represented by eRð1Þ since Ið1Þ is equal to zero (note that this is consistent with
the last statement in the preceding paragraph, where I includes the present eR state). In what follows, we will stick on this
four-state epidemic model. A flow chart is shown in Fig. 1.

Similarly as in [15,24,29] we define an ‘‘infectious contact’’ from an infected node u to its neighbor v to be a contact that
would cause infection of v if v were susceptible. Here comes a second trick: we choose a node v in the network uniformly at
random and modify the spread of the disease by disallowing infectious contacts from v to its neighbors. Denote a (any)
neighbor of v by u. Let h ¼ hðtÞ be the probability that there has not been infectious contact from u to v at time t. It is worth
noting that, by doing so, disease transmission along different edges to node v is independent. Moreover, disallowing infection
originated from v does not modify the probability that v has become infected, although it does affect the dynamics after v is
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