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a b s t r a c t

We present a cheap and tight formula for bounding real and imaginary parts of eigenvalues
of real or complex interval matrices. It outperforms the classical formulae not only for the
complex case but also for the real case. In particular, it generalizes and improves the results
by Rohn (1998) [5] and Hertz (2009) [19]. The main idea behind is to reduce the problem to
enclosing eigenvalues of symmetric interval matrices, for which diverse methods can be
utilized.

The result helps in analysing stability of uncertain dynamical systems since the formula
gives sufficient conditions for testing Schur and Hurwitz stability of interval matrices. It
may also serve as a starting point for some iteration methods.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Stability of dynamical systems attracts attention of control community for several decades. Discrete dynamical systems
lead to a Schur stability, and continuous systems lead to a Hurwitz stability of the system matrices. A matrix A is Schur stable
if its spectral radius is less than 1, and A is Hurwitz if real parts of all eigenvalues are negative.

There are intrinsic uncertainties when solving practical problems. Uncertainties are modeled in diverse ways, but interval
analysis naturally handles the best and worst cases of continuous domains of parameters. The aim of this paper is to derive
cheap but sharp bounds on eigenvalues of complex interval matrices. This will give an efficient tool in stability checking,
among others, since we obtain a strong sufficient condition for stability. Thus, we avoid exhaustive and expensive enumer-
ative or branch & bound methods in many cases.

An interval matrix is defined as a family of matrices

A :¼ ½A;A� ¼ fA 2 Rn�n; A 6 A 6 Ag;

where A; A 2 Rn�n; A 6 A, are given matrices, and the inequality is considered element-wise. The midpoint and the radius of
A are denoted respectively by

Ac :¼ 1
2
ðAþ AÞ; AD :¼ 1

2
ðA� AÞ:

The set of all n� n interval matrices is denoted by IRn�n. A complex interval matrix as a family Aþ iB, where A and B are
interval matrices of order n. The eigenvalue set KðAþ iBÞ corresponding to Aþ iB is defined as the set of all eigenvalues over
all Aþ iB 2 Aþ iB, that is,
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KðAþ iBÞ ¼ fkþ ilj9A 2 A 9B 2 B 9xþ iy – 0 : ðAþ iBÞðxþ iyÞ ¼ ðkþ ilÞðxþ iyÞg:

Next, we use qðAÞ for the spectral radius of A. The real and imaginary part of a complex number z is denoted by ReðzÞ and
ImðzÞ, respectively.

Deif [1] presents a description of the eigenvalue sets and their exact bounds, however, it is valid only under some assump-
tions on sign pattern invariance of eigenvectors, which are not so easy to verify. In praxis, it mostly suffices to calculate a fast
computable enclosures (supersets) of eigenvalue sets. Kolev and Petrakieva [2] develop an enclosure for real parts eigen-
values by solving nonlinear system of equations; an exact bound can be achieved under some monotonicity assumptions.
Kolev [3] extends it to the class of interval parametric matrices. Mayer [4] proposes an enclosure method for eigenvalues
of real and complex interval matrices based on Taylor expansion. A cheap formula for an enclosure is in Rohn [5]. An esti-
mation on eigenvalues based on perturbation theory appears in Ahn et al. [6].

Even though complex matrices are less common in practice, there are still some applications and techniques using them,
and thus motivation our research. Stability of systems with complex matrices is studied e.g. in [7–9]. Ahn et al. [10] reduced
the problem of checking robust stability of a fractional-order linear time invariant uncertain interval system to finding max-
imal eigenvalues of a Hermitian complex interval matrix.

For Hurwitz stability checking, Franze et al. [11] present a sufficient condition by using a Gershgorin-type theorem. Xiao
and Unbehauen [12] show that Schur/Hurwitz stability checking can be reduced to checking only exposed faced of an inter-
val matrix. Further, Rohn [13] proved that Hurwitz stability can be reduced to inspecting 22n�1 special vertex matrices pro-
vided that each matrix in A has real eigenvalues only. Stability analysis based on Lyapunov equation was studied in
[10,14,15].

A special subclass of interval matrices are symmetric interval matrices. For an interval matrix A, the corresponding sym-
metric interval matrix AS is defined as a family of all symmetric matrices in A, that is,

AS ¼ fA 2 AjA ¼ ATg:

A real symmetric matrix A 2 Rn�n has n real eigenvalues; we can assume that they are sorted in a non-increasing order as
follows

k1ðAÞP k2ðAÞP � � �P knðAÞ:

Extending the notation for symmetric interval matrices, we introduce

kiðASÞ ¼ ½kiðASÞ; kiðASÞ� :¼ kiðAÞjA 2 AS
n o

; i ¼ 1; . . . ;n

the eigenvalue sets of a symmetric interval matrix AS. The eigenvalue sets represent n compact intervals, which are either
disjoint or may overlap [16].

Even though the main focus of this paper is on bounding eigenvalues of general (complex) interval matrices, we review
some methods for symmetric interval matrices since our main result reduces computation of the general case to the sym-
metric one. Various bounding methods are discussed in Hladík et al. [16]. For checking Schur/Hurwitz stability a symmetric
interval matrix, [17] proposed a branch & bound algorithm. Other related results are found in [18–21].

The following simple but efficient bounds are due to Rohn [21].

Theorem 1 (Rohn, 2005). For each i 2 f1; . . . ;ng one has

kiðASÞ# ½kiðAcÞ � qðADÞ; kiðAcÞ þ qðADÞ�:
As shown by Hertz [18,19], the extremal eigenvalue limits k1ðASÞ and knðASÞ can be computed exactly by inspecting 2n�1

special vertex matrices.

Theorem 2 (Hertz, 1992). Define Z :¼ f1g � f�1gn�1 ¼ fð1;�1; . . . ;�1Þg and for a z 2 Z define Az; A0z 2 AS in this way:

ðazÞij ¼
aij if zi ¼ zj;

aij if zi – zj;

�
; ða0zÞij ¼

aij if zi ¼ zj;

aij if zi – zj:

�

Then

k1ðASÞ ¼ max
z2Z

k1ðAzÞ; knðASÞ ¼min
z2Z

knðA0zÞ:

The main focus of this paper is on bounding complex eigenvalues of interval matrices. One of the basic bounds is the fol-
lowing formula by Rohn [5].

Theorem 3 (Rohn, 1998). Let A 2 IRn�n. Then for each eigenvalue kþ il 2 KðAÞ we have

k 6 k1
1
2
ðAc þ AT

c Þ
� �

þ q
1
2
ðAD þ AT

DÞ
� �

;
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