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a b s t r a c t

In this paper we obtain symmetry reductions of the K(m,n) equation with generalized evo-
lution term. The reduction to ordinary differential equations comes from an optimal sys-
tem of subalgebras. Some of these equations admit symmetries which lead to further
reductions, and one of them comes out suitable for qualitative analysis. Its dynamical
behavior is fully described and conservative quantities are stated.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The K(m,n) equation with generalized evolution term, was introduced by Biswas in [1] and it is given by

ðulÞt þ aumux þ bðunÞxxx ¼ 0; ð1:1Þ

where a; b 2 R� and l;m;n 2 Zþ. The first term is the generalized evolution term, the second and the third terms represent the
convection one and the dispersion one, respectively.

In [2], Bruzón and Gandarias presented a procedure to look for exact solutions of nonlinear ordinary differential equations
(ODE’s), which leads to solutions (not obtained in [1]) in terms of Jacobi elliptic functions for specific values of the param-
eters l;m; n; a and b of Eq. (1.1). This equation is a generalized form of the K(m,n) equation, usually introduced as

ut þ aðumÞx þ bðunÞxxx ¼ 0 ð1:2Þ

and, in turn, of the Korteweg–de Vries (KdV) equation, where l ¼ m ¼ n ¼ 1. On the other hand, Eq. (1.1) is equivalent to

v t þ
a
l
vmþ1�l

l vx þ bðvn
l Þxxx ¼ 0;

after using the transformation u ¼ v1
l , so it is sufficient to consider the case l ¼ 1 if just mþ1�l

l ; 1
l 2 Zþ.

Different variants or particular cases of the K(m,n) equation are found in the literature [2–12]. Recently Chen and Li [3]
have studied the simple peak solitary wave solutions of the osmosis Kð2;2Þ equation under the inhomogeneous boundary
conditions and they have obtained all smooth, peaked and cusped solitary wave solutions of it. The modified KdV (mKdV)
equations (Eq. (1.1) with l ¼ 1; m ¼ 2 and n ¼ 1) and their solutions have also been studied intensively. Liu and Li ([4]
and its references) considered an extended form of the mKdV equation of the form
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ut þ a1uxxx þ a2ux þ a3uux þ a4u2ux ¼ 0;

the all exact solutions based on the Lie group method were given, and the bifurcations and traveling wave solutions were
obtained. Rosenau and Hyman [5] studied the role of nonlinear dispersion in the formation of patterns in liquid drops of
the nonlinear dispersive equations.

ut þ umux þ ðunÞxxx ¼ 0

for m > 0; 1 < n 6 3. They also introduced a class of solitary wave solutions with compact support, i.e. solutions with ab-
sence of infinite wings or absence of infinite tails, called compactons. In addition to compactons, Rosenau [6] proved that
the nonlinear dispersive equations Kðm;nÞ

ut þ aðumÞx þ ðunÞxxx ¼ 0;

which exhibit a number of remarkable dispersive effects, can support both: kinks and solitons with an infinite slope(s), peri-
odic waves and dark solitons with cusp(s), all being manifestations of nonlinear dispersion in action. For n < 0 the enhanced
dispersion at the tail may generate algebraically decaying patterns. Other solitary-wave solutions of K(m,n) equations were
also found by Rosenau in [7,8].

It is known that many integrable equations arise naturally from motions of plane or space curves. In [9,10] the authors
investigated the possibility that the Kðmþ 1;mÞ and Kðmþ 2;mÞmodels can be obtained from plane curves in certain geom-
etries, which provides the geometric interpretations to K(m,n) equations.

Existing techniques for solving nonlinear partial differential equations (PDE’s) include: Inverse scattering transform, Wadati
trace method, pseudo–spectral method, tanh–sech method, sine–cosine method, Riccati equation expansion method, expo-
nential function method, etc. ([1] and references within it). In spite of the key role of these particular techniques used for solving
the equations, one of their limitations is that they do not lay down the conserved quantities. This drawback is, for example,
partially overcome in [1], where a 1-soliton solution of Eq. (1.1) is obtained by using the solitary wave ansatz, and a conserved
quantity is calculated. Among the techniques, the methods of point transformations are a powerful tool. By means of the Theory
of Symmetry Reductions [13,14] a single group reduction may transform a PDE with two independent variables into ODE’s.
Local symmetries admitted by a PDE are useful for finding invariant solutions. These solutions are obtained by using group
invariants to reduce the number of independent variables. The basic idea of the technique is that, a reduction transformation
exists when a differential equation is invariant under a Lie group of transformations. The machinery of the Lie group theory pro-
vides a systematic method to search for these special group invariant solutions. Although symmetry constraints are powerful in
determining integrability of PDE’s, not all of them yield exact solutions of the equations, as pointed out in [15].

It is an interesting and important problem how to generally explore integrability of nonlinear PDE’s by integrable ODE’s.
There is a pretty general scheme to reduce PDE’s into integrable ODE’s. The separation of the time and space variables with-
out using any structure associated with evolution equations is analyzed in [16], and an extension by means of the Frobenius
integrable decompositions (FID) is introduced for partial differential equations in [17]. The resulting theory provides tech-
niques which are applied in particular to the celebrated KdV and MKdV equations. The resulting integrable decompositions
have exhibited many interesting solution relations with integrable ODE’s, including those relations of traveling wave solu-
tions with scalar differential equations and one-dimensional Hamiltonian systems. It also generalizes the Theory of Symme-
try constraints in soliton theory, since it does not require any structure associated with the equations under investigation,
such as Lax pairs for soliton equations and the symmetry property in symmetry constraints.

The dynamical systems theory [18–20] provides fundamental tools for dealing with ODE’s, by qualitative analysis and
conservative quantities. Previous works have used them to deal with ODE’s coming from PDE’s problems. In [21], solutions
that present behaviors like sources, asymptotic plane waves, and blow up process at finite time have been characterized. In
[22], singular perturbation theory has been applied for analyzing the solutions. In several works, Tang et al. have studied the
traveling wave solutions of a given PDE according to different parametric conditions. In [11,12,23,24], bifurcations of phase
portraits are discussed in detail, and although the conservative aspects of the system are not dealt with, a first integral
(conserved quantity) is deduced. In particular, this study is applied to a generalized KdV equation in [12] and to
Kðn;�n;2nÞ equations in [11].

In this work we consider the K(m,n) equation with generalized evolution term (1.1). The paper is organized as follows: first,
a complete calculus of the different reductions admitted by this equation is developed (Sections 2 and 3). Second, among the
reduced equations, the most general case comes out suitable for qualitative analysis. Indeed, the reduced equation yields to a
conservative system, and this allows us to make a complete characterization of its possible dynamical behaviors (Section 4).

2. Classical symmetries

To apply the classical method to Eq. (1.1) with a; b – 0 we consider the one-parameter Lie group of infinitesimal trans-
formations in ðx; t;uÞ given by

x� ¼ xþ �nðx; t;uÞ þ Oð�2Þ;
t� ¼ t þ �sðx; t;uÞ þ Oð�2Þ;
u� ¼ uþ �gðx; t;uÞ þ Oð�2Þ;
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