
Computer search for trees with minimal ABC index

Boris Furtula a, Ivan Gutman a,⇑, Miloš Ivanović a, Damir Vukičević b
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a b s t r a c t

The ABC index is a degree-based molecular structure descriptor, that found chemical appli-
cations. Finding the connected graph(s) of a given order whose ABC index is minimal is a
hitherto unsolved problem, but it is known that these must be trees. In this paper, by com-
bining mathematical arguments and computer-based modeling we establish the basic
structural features of the minimum-ABC trees.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The atom-bond connectivity (ABC) index is one of the numerous recently introduced vertex-degree-based graph invari-
ants, believed to be capable of serving as molecular structure descriptors [1,8]. It was put forward by Estrada et al. in 1998
[2], but remained unnoticed. Ten years later, Estrada published another article on the same topic [3], which attracted the
attention of colleagues and triggered a long series of mathematical investigations [4–7,9,11–17].

The physico-chemical applicability of the ABC index is based on the fact that there exists an excellent (linear) correlation
between ABC and the experimental heats of formation of alkanes [2,10]. In the paper [3], Estrada established the physical
basis for this correlation. In fact, in [3] a new mathematical model was put forward, capable of rationalizing (both qualita-
tively and quantitatively) the experimentally established regularities for the stability of linear and branched alkanes, as well
as for the strain energy of cycloalkanes. In Estrada’s model [3], the term ðdi þ dj � 2Þ=ðdidjÞ in Eq. (1) is interpreted as the
count of the 1,2-, 1,3-, and 1,4-interactions in the carbon-atom skeleton. These interactions play a fundamental role in
the energetics of alkane molecules.

If G is a graph of order n, and if di is the degree (=number of first neighbors) of its i-th vertex, i ¼ 1;2; . . . ;n, then

ABC ¼ ABCðGÞ ¼
X

ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di þ dj � 2

didj

s
; ð1Þ

with the summation going over all pairs of adjacent vertices.
When a new graph invariant is studied, the first question is to determine its minimal and maximal value for graphs of a

given order and to characterize the respective extremal species. Whereas the finding of the n-vertex graph with maximal ABC
index is an easy task, the structure of the connected n-vertex graph(s) with minimal ABC appeared to be a significantly more
difficult problem [16]. In this paper we perform a computer search and use computer-aided models, aimed at bringing us
closer to the solution of the problem.

Of the numerous already established properties of the ABC index we point out the inequality ABCðGÞ > ABCðG� eÞ which
holds for all edges e of any graph G [13,15]. Its immediate consequences are that
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(a) among all graphs of order n, the complete graph Kn has the greatest ABC index, and
(b) among all connected graphs of order n, the smallest ABC index is attained by one or more trees.

Recall that, trivially, the n-vertex graph with minimal ABC index (equal to zero) is the edgeless Kn. In addition, the n-ver-
tex tree with maximal ABC index is the star [4], which also is an easy result.

2. First step: a brute-force computer search

In order to get some idea about the structure of the n-vertex tree(s) with minimal ABC index, we decided to check all trees
of order n, up to n as large as possible, and to single out the tree(s) with smallest ABC. It was hoped that after some n the form
of the minimum-ABC tree will emerge, enabling us to formulate a sound conjecture on its general structure. Whereas the
evaluating of the ABC index for any particular tree is an elementary computational task, the true problem is that with
increasing value of n the number of trees rapidly increases and becomes prohibitively large. Table 1 shows how many trees
would be needed to examine in order to perform our naive direct approach.

2.1. Computational details

In view of the rapidly growing number of n-vertex trees, it turns out that the task of generating trees and identifying the
minimum-ABC species using a single PC/workstation/server is feasible up to n ¼ 25. For larger values of n a special strategy
had to be adopted.

Consider, for example, the case of n ¼ 29, when 5,469,566,585 distinct trees need to be generated and their ABC-values
computed. Using Python script on a modern 2.4 GHz CPU to fulfill this task, it turns out that average speed on a single core is
about 200,000 trees/min. Therefore, the entire process of calculating the ABC indices would take about 19 days on a single
CPU core!

For larger n-values something different had to be developed. Our algorithm for identifying the minimum-ABC tree(s) con-
sists of two successive steps:

(1) Generating the trees using a recursive scheme.
(2) Computing the ABC index for each generated tree in order to find its minimum value.

According to the theoretical discussion found in [18], phase (1) is not parallelizable at all, due to the recursive nature of
the algorithm used. Even with all modern distributed computing technologies and frameworks, some algorithms have inher-
ent sequentiality and cannot be efficiently decomposed into smaller semi-independent parts having the ability to be exe-
cuted concurrently.

The situation is totally different regarding phase (2), since searching inside graph spaces is an easily parallelizable task,
with single point of synchronization – reduction at the very end. In the simplest scenario, the work can be shared equally
among the available processors statically, before the calculation takes place. After each CPU finds the minimum ABC index
inside its own tree subspace, the result is reported to the master process which is then responsible to compute the grand
total. In a more complicated scenario, the work could be distributed dynamically, but in this paper, the first (static load bal-
ancing) scenario was employed, since it is more suitable for the grid computing platform.

There is another issue with splitting the entire process into phases (1) and (2) as we did. That means that after phase (1) is
finished, the trees have to be stored in some format in order to be distributed to the assigned CPUs. Taking the same example
of n ¼ 29, using standard ASCII format, more than 400 GB of disk space would be necessary to store all trees of the mentioned
order. Having in mind that such large files have to be transferred over the network to reach the appropriate CPUs in the dis-
tributed computing scheme, it is obvious that it would be a big waste of time and network resources. The solution capable of
reducing storage space up to 27 times has been found in the GZIP streaming; instead of storing trees in pure ASCII sequence,

Table 1
Number of trees with n vertices.

n No. of trees n No. of trees

15 7741 25 104,636,890
16 19,320 26 279,793,450
17 48,629 27 751,065,460
18 123,867 28 2,023,443,032
19 317,955 29 5,469,566,585
20 823,065 30 14,830,871,802
21 2,144,505 31 40,330,829,030
22 5,623,756 32 109,972,410,221
23 14,828,074 33 300,628,862,480
24 39,299,897 34 823,779,631,721
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