Gaps between zeros of second-order half-linear differential equations

S.H. Saker ${ }^{\text {a,* }}$, R.P. Agarwal ${ }^{\text {b }}$, Donal O’Regan ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
${ }^{\mathrm{b}}$ Department of Mathematics, Texas A and M University-Kingsville, Texas 78363, USA
${ }^{\text {c School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland }}$

ARTICLE INFO

Keywords:

Disfocality
Nonoscillation
Half-linear differential equations
Opial's inequality

Abstract

In this paper, for second order half-linear differential equations, we will establish some new inequalities of Lyapunov's type. These inequalities give results related to the spacing between consecutive zeros of a solution and the spacing between a zero of a solution and/ or a zero of its derivative. The results also yield conditions for disfocality, disconjugacy and lower bounds for an eigenvalue of a boundary value problem. The main results will be proved by making use of some generalizations of Opial and Wirtinger type inequalities. Some examples are considered to illustrate the main results.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Consider the second-order half-linear differential equation

$$
\begin{equation*}
\left.\left(r(t)\left|x^{\prime}(t)\right|^{\gamma-1} x^{\prime}(t)\right)^{\prime}+q(t)|x(t)|^{\gamma-1} x(t)=0,\right\} \quad \alpha \leqslant t \leqslant \beta, \tag{1.1}
\end{equation*}
$$

where $\gamma \geqslant 1$ is a positive constant, r and q are real measurable functions on $[\alpha, \beta]$ satisfying $r(t)>0$, and

$$
\int_{\alpha}^{\beta}\left(\frac{1}{r(s)}\right)^{\frac{1}{\gamma}} d s<\infty \quad \text { and } \quad \int_{\alpha}^{\beta}|q(t)| d t<\infty
$$

The terminology half-linear arises because of the fact that the space of all solutions of (1.1) is homogeneous, but not generally additive. We assume that (1.1) possesses such a nontrivial solution. The nontrivial solution x of (1.1) is said to be oscillate or to be oscillatory, if it has arbitrarily large zeros. Eq. (1.1) is said to be disconjugate on the interval $[\alpha, \beta]$, if there is no nontrivial solution of (1.1) with two zeros in $[\alpha, \beta]$. Eq. (1.1) is said to be nonoscillatory on $\left[t_{0}, \infty\right.$) if there exists $c \in\left[t_{0}, \infty\right)$ such that this equation is disconjugate on $[c, d]$ for every $d>c$. We say that (1.1) is right disfocal (left disfocal) on $[\alpha, \beta]$ if the solutions of (1.1) such that $x^{\prime}(\alpha)=0\left(x^{\prime}(\beta)=0\right)$ have no zeros in $[\alpha, \beta]$. For oscillation and nonoscillation results for half-linear differential equations, we refer the reader to the book [22].

In this paper, we are concerned with three interested problems for a solution $x(t)$ of the Eq. (1.1):
(i) obtain lower bounds for the spacing $\beta-\alpha$, where $x(\alpha)=x^{\prime}(\beta)=0$, or $x^{\prime}(\alpha)=x(\beta)=0$,
(ii) obtain lower bounds for the spacing $\beta-\alpha$, where $x(\alpha)=x(\beta)=0$,
(iii) obtain a lower bound for the first eigenvalue of the boundary value problem

[^0]$$
-\left(\left(x^{\prime}(t)\right)^{\gamma}\right)^{\prime}+q(t) x^{\gamma}(t)=\lambda x^{\gamma}(t), \quad x(\alpha)=x(\beta)=0
$$

The best known existence result in the literature for a special case of Eq. (1.1) was proved by Lyapunov [16]. This result supplies a criterion sufficient for the stability of the differential equation

$$
\begin{equation*}
x^{\prime \prime}+q(t) x(t)=0, \quad \alpha \leqslant t \leqslant \beta \tag{1.2}
\end{equation*}
$$

with a periodic coefficient. This result together with [25] establishes that if $q(t)$ is positive continuous and if (1.2) has two zeros $a<b$, then

$$
\begin{equation*}
\int_{a}^{b}|q(t)| d t>\frac{4}{b-a} \tag{1.3}
\end{equation*}
$$

This result has been used in many applications, for example in eigenvalue problems, stability, etc. [28]. Since the discovery of this inequality many generalizations and extensions have appeared in the literature. In the following, we present some results that motivate the contents of this paper. In [15] the author shows that if x is a solution of (1.2) such that $x^{\prime}(0)=x(b)=0$, then

$$
\begin{equation*}
\int_{0}^{b}(b-t) q_{+}(t) d t>1 \quad \text { where } \quad q_{+}=\max \{q(t), 0\} \tag{1.4}
\end{equation*}
$$

and if

$$
\begin{equation*}
\int_{a}^{c}(t-a) q_{+}(t) d t \leqslant 1 \quad \text { and } \quad \int_{c}^{b}(b-t) q_{+}(t) d t \leqslant 1 \tag{1.5}
\end{equation*}
$$

then (1.2) is disconjugate in $[a, b]$. In [12] the authors proved that if x is a solution of (1.2) with no zeros in (α, β) and such that $x^{\prime}(\alpha)=x(\beta)=0$, then

$$
\begin{equation*}
(\beta-\alpha) \sup _{\alpha \leqslant t \leqslant \beta}\left|\int_{\alpha}^{t} q(s) d s\right|>1 \tag{1.6}
\end{equation*}
$$

If instead $x(\alpha)=x^{\prime}(\beta)=0$, then

$$
\begin{equation*}
(\beta-\alpha) \sup _{\alpha \leqslant t \leqslant \beta}\left|\int_{t}^{\beta} q(s) d s\right|>1 . \tag{1.7}
\end{equation*}
$$

Brown and Hinton [7] proved that if x is a solution of the Eq. (1.2) with no zeros in (α, β) and such that $x(\alpha)=x^{\prime}(\beta)=0$, then

$$
\begin{equation*}
2 \int_{\alpha}^{\beta} Q^{2}(s)(s-\alpha) d s>1, \tag{1.8}
\end{equation*}
$$

where $Q(t)=\int_{t}^{\beta} q(s) d s$. If instead $x^{\prime}(\alpha)=x(\beta)=0$, then

$$
\begin{equation*}
2 \int_{\alpha}^{\beta} Q^{2}(s)(\beta-s) d s>1, \tag{1.9}
\end{equation*}
$$

where $Q(t)=\int_{\alpha}^{t} q(s) d s$. In [2] the nonlinear differential equation

$$
\begin{equation*}
\left(r(t) x^{\prime}(t)\right)^{\prime}+q(t) f(x(t))=0 \tag{1.10}
\end{equation*}
$$

was considered and some new Lyapunov type inequalities were presented. One can find other results for (1.2) and higher order differential equations in [9-11,17,23,24]. Hong et al. [13] considered the equation

$$
\begin{equation*}
\left(\left|x^{\prime}(t)\right|^{\gamma-1} x^{\prime}(t)\right)^{\prime}+q(t)|x(t)|^{\gamma-1} x(t)=0, \quad \alpha \leqslant t \leqslant \beta \tag{1.11}
\end{equation*}
$$

where $\gamma \geqslant 1$ is a positive constant and proved that if x is a solution of the Eq. (1.11) with no zeros in (α, β) and such that $x^{\prime}(\alpha)=x(\beta)=0$, then

$$
\begin{equation*}
(\beta-\alpha)^{\gamma} \sup _{\alpha \leqslant t \leqslant \beta}\left|\int_{\alpha}^{t} q(s) d s\right|>1 \tag{1.12}
\end{equation*}
$$

If instead $x(\alpha)=x^{\prime}(\beta)=0$, then

$$
\begin{equation*}
(\beta-\alpha)^{\gamma} \sup _{\alpha \leqslant t \leqslant \beta}\left|\int_{t}^{\beta} q(s) d s\right|>1 \tag{1.13}
\end{equation*}
$$

In [20] the general equation

$$
\begin{equation*}
\left(r(t)\left|x^{\prime}(t)\right|^{\gamma-1} x^{\prime}(t)\right)^{\prime}+q(t)|x(t)|^{\lambda-1} x(t)=0, \quad \alpha \leqslant t \leqslant \beta \tag{1.14}
\end{equation*}
$$

https://daneshyari.com/en/article/4630031

Download Persian Version:

https://daneshyari.com/article/4630031

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: shsaker@mans.edu.eg (S.H. Saker).

