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a b s t r a c t

In this paper we propose a numerical method to characterize hyperchaotic points in the
parameter-space of continuous-time dynamical systems. The method considers the second
largest Lyapunov exponent value as a measure of hyperchaotic motion, to construct two-
dimensional parameter-space color plots. Different levels of hyperchaos in these plots
are represented by a continuously changing yellow–red scale. As an example, a particular
system modeled by a set of four nonlinear autonomous first-order ordinary differential
equations is considered. Practical applications of these plots include, by instance, walking
in the parameter-space of hyperchaotic systems along desirable paths.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Historically, hyperchaos was first presented by Rössler [1] to characterize a chaotic system with more than one positive
Lyapunov exponent. It means that the dynamics of the system is expanded in two or more directions simultaneously, result-
ing in a more complex chaotic attractor when we compare with the chaotic system with only one positive Lyapunov expo-
nent. This expansion of the dynamics, happening at the same time in two or more directions, makes hyperchaotic systems
have better performance in many chaos based fields, including technological applications, when compared to chaotic sys-
tems. For example, hyperchaotic systems, due to higher unpredictability and the much more complicated structure of the
attractors, can be used to improve the security in chaotic communication systems, where a chaotic signal is used to mask
the message to be transmitted, once messages masked by chaotic systems are not always secure [2].

Hyperchaotic systems are common in many fields such as nonlinear circuits [3,4], secure communications [5,6], lasers
[7,8], colpitts oscillators [9], control [10–12], synchronization [13–17], quantum cellular neural network [18], and so on.
A standard way to investigate the dynamics of a hyperchaotic system is by modeling them with differential equations. If
we prefer to use autonomous first order differential equations to model a hyperchaotic system, we need to consider at least
four these equations. As is well known [19], in a hyperchaotic four-dimensional dissipative system there is only one possi-
bility to the Lyapunov spectrum: two exponents are positive, one is null, and one is negative.

A standard way widely used to investigate hyperchaotic states is by considering plots of the Lyapunov exponents as a
function of only one of the parameters. Regions in these plots where the largest and the second largest Lyapunov exponents
are simultaneously greater than zero, characterize a hyperchaotic behavior of a particular system. Therefore, in the case of a
n-parameter system, (n � 1) parameters are always kept fixed, and only one is varied. In this paper we propose a method that
also considers the magnitude of the second largest Lyapunov exponent to numerically characterize points with hyperchaotic
behavior, in which two parameters are simultaneously varied. Therefore, the method uses a two-dimensional parameter-
space of a dynamical system modeled by a set of nonlinear autonomous first-order ordinary differential equations. Each
point on this parameter-space is painted with a color that indicates the level of hyperchaos of the point. Here we report
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specific results obtained for a prototype, which is a particular four-dimensional system constructed by us from a three-
dimensional set of nonlinear autonomous first-order ordinary differential equations proposed by Wang [24], by introducing
a state feedback control to the first equation. This new controlled system is given by

_x ¼ aðx� yÞ � yzþw;
_y ¼ �byþ xz;
_z ¼ �czþ dxþ xy;
_w ¼ �eðxþ yÞ;

ð1Þ

where x, y, z, w represent dynamical variables, and a, b, c, d, e > 0 are parameters. Here the parameters b = 9, c = 5, and d = 0.06
are kept fixed, while a and e are simultaneously varied.

2. Some elementary properties of the new system

The divergence of the vector field (1) is given by
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@w
¼ a� b� c ¼ a� 14; ð2Þ

from where we conclude that the system (1) is dissipative for a < 14 and, therefore, that the phase-space contracts volumes
as the time increases. As a consequence, all the bounded system trajectories finally settle onto an attractor in a four-dimen-
sional phase-space, by choosing adequately the parameter range 0 < a < 14.

The equilibrium points of the system (1) are calculated by doing _x ¼ _y ¼ _z ¼ _w ¼ 0, that is, by solving the set of coupled
equations

aðx� yÞ � yzþw ¼ 0;
� byþ xz ¼ 0;
� czþ dxþ xy ¼ 0;
� eðxþ yÞ ¼ 0;

ð3Þ

for x, y, z, and w. Obviously the origin P0 = (0,0,0,0) is an equilibrium point. Other two equilibria are P1 = ((d + b)/2,�(d + b)/2,

�b,b(b/2 � a) + bd/2 � ad) and P2 = ((d � b)/2,�(d � b)/2,�b,�b(b/2 � a) + bd/2 � ad), where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4bc

p
. The Jacobian

matrix for system (1) at P0, denoted by J, is given by

J ¼

a �a 0 1
0 �b 0 0
d 0 �c 0
�e �e 0 0

0
BBB@

1
CCCA;

and the characteristic equation, calculated using det(J �mI) = 0, where m represents the eigenvalues and I is the 4 � 4 iden-
tity matrix, is

ðmþ cÞðmþ bÞðm2 � amþ eÞ ¼ 0; ð4Þ

from where we obtain the eigenvalues

m1 ¼ �b; m2 ¼ �c; and m� ¼
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4e
p

2
:

As is well known [19], the origin P0 is a stable equilibrium point if the real part of the corresponding eigenvalues is negative.
Take into account that a > 0 and e > 0, we conclude that if a2 > 4e, m+ is always real and positive. We also conclude that if
a2 < 4e, m± are complex conjugate with real part greater than zero. Therefore, with respect to the origin P0, it is an unstable
saddle-node equilibrium point, a necessary condition to the occurrence of chaos (or hyperchaos) in system (1).

For parameters b = 9, c = 5, and d = 0.06 the eigenvalues of the Jacobian matrix associated to the points P1 and P2 are not
analytically obtained, as a function of the other parameters, a and e. They are a solution of a four-degree polynomial in m that
does not factorize as Eq. (4) above. We point out that the analytical expressions of the eigenvalues are not necessary to dis-
cuss the stability of an equilibrium point. The Routh–Hurwitz criterion [19–23] can be used in order to reach this purpose.
We do not present here the result of the application of the Routh–Hurwitz criterion, because our principal interest is in
numerical results for the parameter-space, which appear in the next section.

3. Numerical characterization of the hyperchaotic motion

Fig. 1 shows two parameter-space plots displaying, each one of them, different dynamical behaviors for system (1). Both
plots were obtained by computing Lyapunov exponents on a 500 � 500 mesh of parameters (e,a). In Fig. 1(a) is considered
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