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a b s t r a c t

This paper is devoted to impulsive periodic Gause-type predator–prey systems with mono-
tonic or non-monotonic numerical responses. With the help of a continuation theorem
based on coincidence degree theory, we establish easily verifiable criteria for the existence
of positive periodic solutions. As corollaries, some applications are listed. In particular, our
results improve and generalize some known ones.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Existence of positive periodic solutions for population dynamical systems has been intensively investigated in the liter-
ature including [1–10], and references therein.

In [3], Ding and Jiang studied the following periodic Gause-type predator–prey system:

x0ðtÞ ¼ xðtÞfðt; xðt � sðtÞÞÞ � gðt; xðtÞÞyðt � r1ðtÞÞ;
y0ðtÞ ¼ yðtÞ½�dðtÞ þ hðt; xðt � r2ðtÞÞÞ�;

�
ð1:1Þ

where x and y are the prey and the predator population size, respectively. The function f(t,v) is the growth rate of the prey in
the absence of the predator. The function d(t) is the death rate of the predator. The function g(t,v), called functional response
of predator to prey, describes the change in the rate of exploitation of prey by a predator as a result of a change in the prey
density. The function h(t,v), called numerical response of predator to prey, describes the change in reproduction rate with
changing prey density. Using the method of coincidence degree, the authors established sufficient conditions for the exis-
tence of positive periodic solutions.

As we know, in population dynamics, many evolutionary processes experience short-time rapid change after undergoing
relatively long smooth variation. Examples include annual harvesting and stocking of species as well as annual immigration.
Incorporating these phenomena gives us impulsive differential equations. For the theory of impulsive differential equations,
we refer the reader to [11,12]. In the past few years, there have been a number of studies which applied impulsive differen-
tial equations to biological problems (see, e.g. [13–18]).

In the present paper, incorporating impulses into system (1.1), we investigate the following impulsive periodic Gause-
type predator–prey system:

x0ðtÞ ¼ xðtÞf ðt; xðt � sðtÞÞÞ � gðt; xðtÞÞyðt � r1ðtÞÞ;
y0ðtÞ ¼ yðtÞ½�dðtÞ þ hðt; xðt � r2ðtÞÞÞ�;

�
t – tk;

DxðtÞ ¼ akxðtÞ;
DyðtÞ ¼ bkyðtÞ;

�
t ¼ tk;

8>><>>: ð1:2Þ
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where Dx(t) = x(t+) � x(t), Dy(t) = y(t+) � y(t), 0 < t1 < t2 < � � � < tk < � � � are fixed impulsive points, and limk?1tk = +1.
For the sake of generality and convenience, we always make the following fundamental assumptions for system (1.2):

(H1) s(t), r1(t), r2(t) and d(t) are periodic continuous functions with a common period x > 0.
(H2) ak and bk are constants with 1 + ak > 0, 1 + bk > 0, and there exists an integer q > 0 such that ak+q = ak, bk+q = bk, and

tk+q = tk + x for k 2 Zþ. Without loss of generality, we assume that ½0;x� \ ftkg1k¼1 ¼ ft1; t2; . . . ; tqg.
(H3) f(t,v), g(t,v) and h(t,v) are continuous functions and x-periodic in t, (@f/@v)(t,v), (@g/@v)(t,v) and (@h/@v)(t,v) are also

continuous functions.
(H4) There exists a continuous x-periodic function r(t) such that f(t,v) 6 r(t) for t 2 R; v > 0.
(H5) There exists a positive constant c0 such that 0 < g(t,v) 6 c0v for t 2 R; v > 0.
(H6) h(t,0) = 0, h(t,v) > 0 for t 2 R; v > 0, and

0 <
Z x

0
dðtÞdt �

Xq

k¼1

lnð1þ bkÞ < sup
vP0

Z x

0
hðt; vÞdt:

Readers familiar with predator–prey models may notice that the above assumptions are reasonable for population mod-
els [19]. The assumption of periodicity of the parameters is a way of incorporating the periodicity of the environment. From
the viewpoint of mathematical biology, we only consider positive solutions of system (1.2). Therefore, it is a natural con-
straint that 1 + ak and 1 + bk are all positive. Under the above assumptions, system (1.2) covers many models appeared in
the literature. For instance, g(t,v) can be taken as the logistic growth [1,4,7,18], the Gilpin growth a � bvh [20], the Smith
growth (a � bv)/(D + v) [21], and the Allee effect a + bv � cv2 [22]. h(t,v) can be taken as functional responses of the Lot-
ka–Volterra type mv [19], the Holling type mxn/(A + xn) [7,23], the Ivlev type m(1 � e�Ax) [24], and the Monod–Haldane type
mx/(A + x2) [25]. h(t,v) can be taken as c(t)g(t,v), where c(t) is a continuous x-periodic function.

We note that Wang et al. [18] have considered a special case of system (1.2), and established sufficient conditions for the
existence of positive periodic solutions. So far as we know, there is no published paper concerned system (1.2).

The main purpose of this paper is, by using the coincidence degree theory developed by Gaines and Mawhin [26], to de-
rive a set of easily verifiable sufficient conditions for the existence of one or multiple positive periodic solutions of system
(1.2). Furthermore, we will see that our results for the above system can be easily extended to the ones with a distributed or
state-dependent delay. As corollaries, some applications are listed. In particular, our results improve and generalize theo-
rems in [1–4,7,18].

2. Preliminaries

In this section, we recall the continuation theorem, the compactness criterion and an auxiliary inequality, which play an
important role in the proof of our main results.

Define

PCx¼ u : Rþ !RjðiÞu is continuous at t – tk; left continuous at t¼ tk; and lim
t!tkþ0

uðtÞ exists; k2Zþ; ðiiÞuðtþxÞ¼uðtÞ
� �

;

PC1
x¼ u2 PCxju is continuous differential at t – tk; lim

t!tk�0
u0ðtÞ and lim

t!tkþ0
u0ðtÞ exist; k2Zþ

� �
:

We note that if u 2 PC1
x then u0 2 PCx.

The set F � PCx is said to be quasi-equicontinuous if for any e > 0 there exists a d > 0 such that if
u 2 F ; k 2 Zþ; t0; t00 2 ðtk�1; tk� \ ½0;x�, and jt0 � t00j < d, then ju(t0) � u(t00)j < e.

Let X, Y be real Banach spaces, L :DomL � X ? Y be a linear mapping, and N :X ? Y be a continuous mapping.
The mapping L is said to be a Fredholm mapping of index zero, if dimKerL = codimImL < +1 and ImL is closed in Y.
If L is a Fredholm mapping of index zero, then there exist continuous projectors P :X ? X and Q :Y ? Y, such that

ImP = KerL, KerQ = ImL = Im(I � Q). It follows that the restriction LP of L to DomL \ KerP : (I � P)X ? ImL is invertible. Denote
the inverse of LP by KP.

The mapping N is said to be L-compact on X, if X is an open bounded subset of X; QNðXÞ is bounded and
KPðI � QÞN : X! X is compact.

Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ ? KerL.

Lemma 2.1 (Compactness criterion [11, p. 24]). The set F � PCx is relatively compact if and only if

(a) F is bounded, that is, kukPCx
¼ supt2½0;x�juðtÞj 6 M for each u 2 F and some M > 0;

(b) F is quasi-equicontinuous.
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