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a b s t r a c t

We are concerned with the qualitative analysis of positive singular solutions with blow-up
boundary for a class of logistic-type equations with slow diffusion and variable potential.
We establish the exact blow-up rate of solutions near the boundary in terms of Karamata
regular variation theory. This enables us to deduce the uniqueness of the singular solution.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a bounded domain with smooth boundary in RN ; N P 1. Assume f : [0,1) ? [0,1) is a locally Lipschitz contin-
uous function such that

f ð0Þ ¼ 0 and f ðtÞ > 0 for t > 0 ð1Þ

and

f is nondecreasing: ð2Þ

Consider the basic population model described by the logistic problem

Du ¼ f ðuÞ in X;

lim
x!@X

uðxÞ ¼ þ1;

u > 0 in X:

8><
>: ð3Þ

All smooth functions satisfying problem (3) are called large (or blow-up boundary) solutions.
Under assumptions (1) and (2), Keller [13] and Osserman [17] proved that problem (3) has a solution if and only ifZ þ1 1ffiffiffiffiffiffiffiffiffiffi

FðuÞ
p du < þ1; ð4Þ

where FðuÞ :¼
R u

0 f ðsÞds.
We refer to Ghergu and Rădulescu [10, Theorem 1.1] for an elementary argument that problem (3) cannot have any solu-

tion if f has a sublinear or a linear growth, hence it does not satisfy condition (4). We point out that the original approach is
due to Dumont et al. [8], who removed the monotonicity assumption (2) and showed that the key role in the existence of
solutions of problem (3) is played only by the Keller–Osserman condition (4).

Functions satisfying the Keller–Osserman condition have a super-linear growth, such as: (i) f(u) = up (p > 1); (ii) f(u) = eu;
(iii) f(u) = up ln(1 + u) (p > 1); (iv) f(u) = u lnp(1 + u) (p > 2).
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We point out that the study of large solutions was initiated by Bieberbach [2] in 1916 and Rademacher [19] in 1943
for the special case f(u) = eu if N = 2 or N = 3. An important contribution to the study of singular solutions with boundary
blow-up is due to Loewner and Nirenberg [15], who linked the uniqueness of the large solution to the growth rate at the
boundary. Motivated by certain geometric problems, they established the uniqueness of the solution in the case
f(u) = u(N+2)/(N � 2), N P 3.

Cîrstea and Rădulescu studied in [5] (see Du and Guo [7] for the quasilinear case) the perturbed logistic problem

Duþ au ¼ bðxÞf ðuÞ in X;

lim
x!@X

uðxÞ ¼ þ1;

u > 0 in X;

8><
>: ð5Þ

where a is a real number and b 2 C0;aðXÞ; 0 < a < 1, such that b P 0 and b X 0 in X. Cîrstea and Rădulescu found the whole
range of values of the parameter a such that problem (5) admits a solution and this responds to a question raised by Brezis.
Their analysis includes the case where the potential b(x) vanishes on @X. Due to the fact that u has a singular behavior on the
boundary, this setting corresponds to the ‘‘competition’’ 0 � 1 on @X. The study carried out in [5] strongly relies on the struc-
ture of the subset of X where the potential b vanishes. In particular, it is argued in [5] that problem (5) has a solution for all
values of a 2 R provided that

intfx 2 X; bðxÞ ¼ 0g ¼ ;:

We also refer to Ghergu and Rădulescu [11] for related results.
Our main purpose in this paper is to study the effect of a sublinear perturbation aup (0 < p < 1) in problem (3). This frame-

work corresponds to a slow diffusion in the population model. According to Delgado and Suárez, the assumption 0 < p < 1
means that the diffusion, namely the rate of movement of the species from high density regions to low density ones, is
slower than in the linear case corresponding to p = 1, which is described by problem (5).

2. Statement of the problem and main results

We start with the following example of singular logistic indefinite superlinear model. Fix m > 1 and consider the nonlin-
ear problem

Dwm þ aw ¼ bðxÞw2 in X;

lim
x!@X

wðxÞ ¼ þ1;

w > 0 in X:

8><
>: ð6Þ

This problem can be regarded as a model of a steady-state single species inhabiting in X, so w(x) stands for the population
density. The parameter a represents the growth rate of the species while the term m > 1 was introduced by Gurtin and MacC-
amy [12] to describe the dynamics of biological population whose mobility depends upon their density. We refer to Li et al.
[14] for a study of problem (6) in the case of multiply connected domains and subject to mixed boundary conditions.

The change of variable u = wm transforms problem (6) into

Duþ aup ¼ bðxÞuq in X;

lim
x!@X

uðxÞ ¼ þ1;

u > 0 in X;

8><
>: ð7Þ

where p = 1/m 2 (0,1) and q = 2/m. As stated in the previous section, it is expected that this problem has a solution in the
super-linear setting, that is, provided that m < 2.

In this paper we study the more general problem

Duþ agðuÞ ¼ bðxÞf ðuÞ in X;

lim
x!@X

uðxÞ ¼ þ1;

u > 0 in X;

8><
>:

where g has a sublinear growth and f is a function satisfying the Keller–Osserman condition such that the mapping f/g is
increasing in (0,1). To fix the ideas, we consider the model problem

Duþ aup ¼ bðxÞf ðuÞ in X;

lim
x!@X

uðxÞ ¼ þ1;

u > 0 in X:

8><
>: ð8Þ

In order to describe our main result we recall some basic notions and properties from the Karamata theory of functions
with regular variation at infinity. We refer to Bingham et al. [3] and Seneta [20] for more details.

D. Repovš / Applied Mathematics and Computation 218 (2011) 4414–4422 4415



Download English Version:

https://daneshyari.com/en/article/4630168

Download Persian Version:

https://daneshyari.com/article/4630168

Daneshyari.com

https://daneshyari.com/en/article/4630168
https://daneshyari.com/article/4630168
https://daneshyari.com

