Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Singular solutions of perturbed logistic-type equations

Dušan Repovš*

Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, P.O. Box 2964, 1001 Ljubljana, Slovenia Faculty of Education, University of Ljubljana, Kardeljeva ploščad 16, 1000 Ljubljana, Slovenia

ARTICLE INFO

Keywords: Singular solution Blow-up boundary Logistic equation Karamata regular variation theory Maximum principle

ABSTRACT

We are concerned with the qualitative analysis of positive singular solutions with blow-up boundary for a class of logistic-type equations with slow diffusion and variable potential. We establish the exact blow-up rate of solutions near the boundary in terms of Karamata regular variation theory. This enables us to deduce the uniqueness of the singular solution. © 2011 Elsevier Inc. All rights reserved.

(2)

1. Introduction

Let Ω be a bounded domain with smooth boundary in \mathbb{R}^N , $N \ge 1$. Assume $f : [0, \infty) \to [0, \infty)$ is a locally Lipschitz continuous function such that

$$f(0) = 0 \text{ and } f(t) > 0 \text{ for } t > 0$$
 (1)

and

f is nondecreasing.

Consider the basic population model described by the logistic problem

$$\begin{cases} \Delta u = f(u) & \text{in } \Omega, \\ \lim_{x \to \partial \Omega} u(x) = +\infty, \\ u > 0 & \text{in } \Omega. \end{cases}$$
(3)

All smooth functions satisfying problem (3) are called *large* (or *blow-up boundary*) solutions.

Under assumptions (1) and (2), Keller [13] and Osserman [17] proved that problem (3) has a solution if and only if

$$\int^{+\infty} \frac{1}{\sqrt{F(u)}} du < +\infty, \tag{4}$$

where $F(u) := \int_0^u f(s) ds$.

We refer to Ghergu and Rădulescu [10, Theorem 1.1] for an elementary argument that problem (3) cannot have any solution if f has a sublinear or a linear growth, hence it does not satisfy condition (4). We point out that the original approach is due to Dumont et al. [8], who removed the monotonicity assumption (2) and showed that the key role in the existence of solutions of problem (3) is played only by the *Keller–Osserman condition* (4).

Functions satisfying the Keller–Osserman condition have a super-linear growth, such as: (i) $f(u) = u^p (p > 1)$; (ii) $f(u) = e^u$; (iii) $f(u) = u^p \ln(1 + u) (p > 1)$; (iv) $f(u) = u \ln^p (1 + u) (p > 2)$.

0096-3003/\$ - see front matter @ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2011.10.018

^{*} Address: Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, P.O. Box 2964, 1001 Ljubljana, Slovenia. *E-mail address*: dusan.repovs@guest.arnes.si

We point out that the study of large solutions was initiated by Bieberbach [2] in 1916 and Rademacher [19] in 1943 for the special case $f(u) = e^u$ if N = 2 or N = 3. An important contribution to the study of singular solutions with boundary blow-up is due to Loewner and Nirenberg [15], who linked the uniqueness of the large solution to the growth rate at the boundary. Motivated by certain geometric problems, they established the uniqueness of the solution in the case $f(u) = u^{(N+2)/(N-2)}$, $N \ge 3$.

Cîrstea and Rădulescu studied in [5] (see Du and Guo [7] for the quasilinear case) the perturbed logistic problem

$$\begin{aligned}
&\int \Delta u + au = b(x)f(u) & \text{in } \Omega, \\
&\lim_{x \to \partial \Omega} u(x) = +\infty, \\
&u > 0 & \text{in } \Omega,
\end{aligned}$$
(5)

where *a* is a real number and $b \in C^{0,\alpha}(\overline{\Omega})$, $0 < \alpha < 1$, such that $b \ge 0$ and $b \ne 0$ in Ω . Cirstea and Rădulescu found the whole range of values of the parameter *a* such that problem (5) admits a solution and this responds to a question raised by Brezis. Their analysis includes the case where the potential b(x) vanishes on $\partial\Omega$. Due to the fact that *u* has a singular behavior on the boundary, this setting corresponds to the "competition" $0 \cdot \infty$ on $\partial\Omega$. The study carried out in [5] strongly relies on the structure of the subset of Ω where the potential *b* vanishes. In particular, it is argued in [5] that problem (5) has a solution for all values of $a \in \mathbb{R}$ provided that

$$\inf\{x \in \Omega; \ b(x) = 0\} = \emptyset$$

We also refer to Ghergu and Rădulescu [11] for related results.

Our main purpose in this paper is to study the effect of a *sublinear* perturbation au^p (0) in problem (3). This framework corresponds to a*slow diffusion*in the population model. According to Delgado and Suárez, the assumption <math>0 means that the diffusion, namely the rate of movement of the species from high density regions to low density ones, is slower than in the linear case corresponding to <math>p = 1, which is described by problem (5).

2. Statement of the problem and main results

We start with the following example of singular logistic indefinite superlinear model. Fix m > 1 and consider the nonlinear problem

$$\begin{cases} \Delta w^m + aw = b(x)w^2 & \text{in } \Omega, \\ \lim_{x \to \partial \Omega} w(x) = +\infty, \\ w > 0 & \text{in } \Omega. \end{cases}$$
(6)

This problem can be regarded as a model of a steady-state single species inhabiting in Ω , so w(x) stands for the population density. The parameter *a* represents the growth rate of the species while the term m > 1 was introduced by Gurtin and MacC-amy [12] to describe the dynamics of biological population whose mobility depends upon their density. We refer to Li et al. [14] for a study of problem (6) in the case of multiply connected domains and subject to mixed boundary conditions.

The change of variable $u = w^m$ transforms problem (6) into

$$\begin{cases} \Delta u + au^p = b(x)u^q & \text{in } \Omega, \\ \lim_{x \to \partial \Omega} u(x) = +\infty, \\ u > 0 & \text{in } \Omega, \end{cases}$$
(7)

where $p = 1/m \in (0, 1)$ and q = 2/m. As stated in the previous section, it is expected that this problem has a solution in the super-linear setting, that is, provided that m < 2.

In this paper we study the more general problem

$$\begin{cases} \Delta u + ag(u) = b(x)f(u) & \text{in } \Omega, \\ \lim_{x \to \partial \Omega} u(x) = +\infty, \\ u > 0 & \text{in } \Omega, \end{cases}$$

where *g* has a sublinear growth and *f* is a function satisfying the Keller–Osserman condition such that the mapping f/g is increasing in $(0,\infty)$. To fix the ideas, we consider the model problem

$$\begin{cases} \Delta u + au^p = b(x)f(u) & \text{in } \Omega, \\ \lim_{x \to \partial \Omega} u(x) = +\infty, \\ u > 0 & \text{in } \Omega. \end{cases}$$
(8)

In order to describe our main result we recall some basic notions and properties from the Karamata theory of functions with regular variation at infinity. We refer to Bingham et al. [3] and Seneta [20] for more details.

Download English Version:

https://daneshyari.com/en/article/4630168

Download Persian Version:

https://daneshyari.com/article/4630168

Daneshyari.com