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a b s t r a c t

By increasing the complexity of system on chip (SoC) designs formal equivalence verification and debug-
ging have become more and more important. Lower level methods such as BDDs and SAT solvers suffer
from space and time explosion problems to match sizes of industrial designs in formal equivalence ver-
ification and debugging. This paper proposes techniques to verify and debug datapath intensive designs
based on a canonical decision diagram called Horner Expansion Diagram (HED). It allows us to check the
equivalence between two models in different levels of abstraction, e.g., a Register Transfer Level (RTL)
implementation and a non-cycle-accurate specification. In order to reduce the complexity of equivalence
checking problem, we tackle the exponential path enumeration problem by automatically identifying
internal equivalent conditional expressions as well as suitable merge points. Our debugging technique
is based on introducing mutations into the buggy implementation and then observing if the specification
is capable of detecting these changes. We make use of a simple heuristic to reduce the number of mutants
when dealing with multiple errors. We report the results of deploying our equivalence verification tech-
nique on several industrial designs which show 16.8� average memory usage reduction and 8.0�
speedup due to merge-point detection. Furthermore, our debugging technique shows 13.7� average
memory usage reduction and 4.6� speedup due to using SMT solvers to find equivalent conditions. In
addition, the proposed debugging technique can avoid the computation of unnecessary mutants so that
the results show 2.9� average reduction of the number of mutants to be processed.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

With the increased size and complexity of digital systems de-
sign verification and debugging become a dominating factor of
the overall digital design flow. Sequential Equivalence Checking
(SEC) is a process of formally proving functional equivalence of de-
signs that may in general have sequentially different implementa-
tions. Examples of sequential differences span the space from
retimed pipelines, differing latencies and throughputs, and even
scheduling and resource allocation differences. On the other hand,
debugging is a process of finding errors or bugs in the RTL imple-
mentation so that the bugs can be removed to make the RTL design
function in the way it was desired. In order to match sizes of real
world designs in formal equivalence checking and debugging,
reducing run times and memory usage for computations is a key
point. Most of hardware verification tools however are based on
bit-level methods like BDD or SAT solvers that suffer from space
and time explosion problems when dealing with industrial designs.

Many companies have paid more attention to design hardware
at higher levels of abstraction due to faster design changes and
higher simulation speed. In this phase, a C-like high level specifica-
tion is described and then refined to a RTL design by adding more
and more implementation details at different steps. Therefore,
there is a significant increase in the amount of verification required
to achieve functionally correct description at each step, if tradi-
tional dynamic techniques such as simulation are used. This has
led to a trend away from dynamic approaches and therefore SEC
methods have become very important to reduce time-to-market
as much as possible.

A few non-cycle-accurate sequential equivalence checking ap-
proaches have been proposed. In symbolic simulation based ap-
proaches [1–6], loop and conditional statements need to be
unrolled and then all paths through the code must be explored.
The hope is that the individual cases are much easier to solve than
the original problem. However, if dependencies exist between dif-
ferent iterations of a loop statement, it will increase the run time
for symbolic simulation and degrades quality due to the exponen-
tial number of paths. As an example, consider equivalence check-
ing of the two C-code snippets in Fig. 1(a). After unrolling for-
loop, we encounter the exponential path enumeration problem be-
cause corresponding to each then and else branch it is necessary to
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have two execution paths which results in enumerating 2N paths
where N is the number of iterations. It is also to be noted that
the results computed on the different paths must be tracked, which
will cause a blow-up in logic if lower level techniques such as BDDs
and SAT solvers are utilized.

The basic idea to cope with this complexity is the fact that many
problems become significantly easier by case-splitting on the right
input variables or internal conditions. In this paper, we present a no-
vel technique to automatically find equivalent internal conditions,
e.g. a < b + c[i] and NOT(a P d) in Fig. 1(b), so that the equivalence
verification problem of cycle-accurate implementation and un-
timed specification is reduced into much easier individual equiva-
lence checking problems which are easily solved. Please keep in
mind that both code 1 and code 2 in Fig. 1 are un-timed models (algo-
rithmic level descriptions) in order to clarify our merge-point detec-
tion mechanism, while our verification and debugging techniques
can deal with cycle-accurate implementation and un-timed specifi-
cation as will be discussed in Sections 4 and 5.

In summary, the main contributions of this paper compared to
our previous works [7–11] are as follows:

� Automatic finding of internal equivalent conditional expres-
sions as well as suitable merge points by using SMT solvers
and our decision diagram called Horner Expansion Dia-

gram (HED) to overcome exponential path enumeration prob-
lem while the process of finding equivalent conditional
expressions in [8] is done manually. We make use of the HED
graph as a canonical representation to check the equivalence
between computationally expensive designs at different levels
of abstraction [12,13].
� Adapting software mutation-based debugging technique into

the RTL designs. In the case of nonequivalent behavior of the
RTL and algorithmic level descriptions, our debugging tech-
nique helps to locate and correct the bug quickly due to con-
verting the debugging problem to an equivalence checking
problem by introducing mutations. Unlike our previous debug-
ging technique presented in [11], in this work a simple heuristic
is presented to reduce the number of mutants when multiple
errors need to be considered.
� Showing empirical results to prove that these techniques allow

us to provide appropriate equivalence verifications and highly
accurate diagnoses very quickly.

The rest of this paper is organized as follows. In Section 2, we
address related work to highlight the importance of the RTL formal
verification and debugging. To make our paper self-contained, the
HED [12,13] as a hybrid canonical representation is described in
Section 3. The proposed HED-based formal equivalence verification
and debugging techniques are presented in Sections 4 and 5,
respectively. Finally, experimental results and a brief conclusion
and future work are shown in Sections 6 and 7, respectively.

2. Related work

2.1. Equivalence checking techniques

Recently, some techniques have been proposed to apply equiv-
alence checking to the system level and the RTL descriptions [1–6].
In [1] an equivalence checking technique to verify system level de-
sign descriptions against their implementations in RTL was pro-
posed. It presented an automatic technique to compute high
level sequential compare points to compare variables of interest
in the candidate design descriptions. They start the two design
state machines at the same initial state and step the machines
through every cycle, until a sequential compare point is reached.
At this point the equivalence of the two state machines is proved
using a lower (Boolean) level engine which is zChaff Satisfiability
(SAT) solver. One of the limitations of this technique is not to be
scalable in the number of cycles. As the number of cycles gets lar-
ger, the size of the expression grows quadratically, causing capac-
ity problems for the lower level SAT engine. Furthermore it may
not be applicable to large designs due to arithmetic encoding. In
addition, in this technique corresponding equivalent points be-
tween two descriptions should be determined while these points
may not be at all obvious due to complex control flow.

The authors of [2] have proposed early cut-point insertion for
checking the equivalence of high level software against RTL of
combinational components. They introduce cut-points early during
the analysis of the software model, rather than after generating a
low level hardware equivalent. This way, they overcome the expo-
nential enumeration of software paths as well as the logic blow-up
of tracking merged paths. However, it is necessary to synthesize
word level information into bit level because of using BDD to rep-
resent the symbolic expressions and so the capacity is limited by
memory and run time requirements. In addition, it has only fo-
cused on combinational equivalence checking and has not ad-
dressed how to extend the proposed method for sequential
equivalence checking problem. Another approach to equivalence
checking between C descriptions is presented in [3]. This approach
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Fig. 1. Path enumeration of conditional statements (a) original source codes and (b)
potential merge point if the equivalence of conditional expressions can be checked.
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