Microprocessors and Microsystems 37 (2013) 1200-1207

journal homepage: www.elsevier.com/locate/micpro

Contents lists available at ScienceDirect

Microprocessors and Microsystems

EMBEDDED
HARDWARE
DESIGN

Multi-character cost-effective and high throughput architecture

for content scanning ™

@ CrossMark

José M. Bande **, José Hernandez Palancar?, René Cumplido”

2 Advanced Technologies Application Center, 7ma A #21406 e/ 214 y 216, CP: 12200 Havana, Cuba
b Instituto Nacional de Astrofisica Optica y Electrénica, Luis E. Erro 1, Sta. Ma. Tonanzintla, Puebla 72840, Mexico

ARTICLE INFO ABSTRACT

Article history:
Available online 23 August 2013

Keywords:

String matching is a time and resource consuming operation that lies at the core of Network Intrusion
Detection Systems. In this paper a method and corresponding hardware architecture for string matching
is presented. The proposed method is composed of two main steps. The first step performs a pre-detec-
tion of signatures alignment, and in the second step the alignment is corrected and the signatures are

NIDS detected by a matcher. The compact and efficient architecture is designed to share resources among sev-

String matching
Content scanning
FPGA

Unique substrings

eral modules that perform the detection and correction step needed for the string matching. Implemen-
tation results in a FPGA Virtex5 device show that the proposed architecture can perform string matching
with a database with more than 400 K characters. And is also capable of achieving speeds of more than

30Gbps, which is much higher that previous works reported in the literature.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Current data transmission technologies are capable of achieving
multi-gigabit rates. For instance, recent standard for optical wire
technologies OC-768 |[1] present a data transmission rate of
40Gbps. In Network Intrusion Detections Systems (NIDS) one of
the main tasks is the scanning of the packets content. Thousands
of strings declared as signatures of malicious content must be de-
tected in order to identify imminent attacks. And the speed of the
data flow on which this string matching operation should be per-
formed is extremely high. In addition, lowering such speed is not
a valid option since this would affect the quality of the service pro-
vided by the network.

In the most demanding environments, current sequential ma-
chine technologies are unable to meet these requirements [2]. Con-
sider the hypothetical situation where a General Purpose
Processors (GPP) could process a single character per clock cycle.
It would need to be working at 5 GHz in order to achieve 40 Gbps.
Obviously, this is not possible with current technologies. This tech-
nological barrier dominated by the operating frequency of the
sequential devices can be outperformed with an intensive use of
parallelism. Here is where the Field Programmable Gates Arrays
devices (FPGAs), have played an important role for NIDS in the last
decades. The most important advantages of these devices over tra-

* This document is a collaborative effort.
* Corresponding author.
E-mail addresses: jpande@cenatav.co.cu (J.M. Bande), jpalancar@cenatav.co.cu (J.
Herndndez Palancar), rcumplido@inaoep.mx (R. Cumplido).

0141-9331/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.micpro.2013.08.001

ditional GPPs are the reconfigurability and the fine grained paral-
lelism they can provide. Reconfigurability, allows updating the
signatures set any number of times, and with the use of parallel-
ism, the signatures can be concurrently detected, while one or
more than one character is processed at each clock cycle.

Hardware cost reduction and throughput increment, are key is-
sues in string matching through hardware; being the hardware
cost reduction the more widely researched. The reason is that aug-
menting throughput elevates the hardware cost. Therefore, there
will be fewer resources available to detect more strings. That is
why the most used practice has been to obtain a low cost architec-
ture and replicate it in order to obtain more throughput.

The throughput of a data flow processing hardware architecture
is defined as the amount of bits processed per time unit. Basically,
there are three strategies to increase the throughput. The first
strategy is focused on the frequency, while the other two concern
the amount of data processed. Achieving a high operational fre-
quency depends on several factors such as: the complexity of the
placed logic, the critical path signals, and the underlying device
technology. Well know techniques as pipelining can be applied in
order to reduce timing at the cost of introducing latency in the
architecture.

The second strategy is works well when the scanned data flow
is divided in streams of data chunks or packets. The data packets
are distributed into several identical string matching units working
in parallel. The overall throughput is the sum of the throughput
provided by each unit. This is commonly called aggregated
throughput. Due to the packetized nature of some data flows, this
form of processing is not very efficient. This is because it is possible

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2013.08.001&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2013.08.001
mailto:jbande@cenatav.co.cu
mailto:jpalancar@cenatav.co.cu
mailto:rcumplido@inaoep.mx
http://dx.doi.org/10.1016/j.micpro.2013.08.001
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

J.M. Bande et al./Microprocessors and Microsystems 37 (2013) 1200-1207 1201

to have some units with no data to process at all, while there are
still data waiting for being processed in other units. This strategy
is easy to implement by just replicating as many processing units
as possible.

The third strategy consists on augmenting the amount of data
symbols processed from the data flow at each clock period. Archi-
tectures with this feature are commonly called multi-character
architecture. This form is more efficient as it does not underutilize
hardware resources and it can be used on either, packetized or con-
tinuous data streams. On the other hand, when several characters
are processed at each clock cycle, the signatures may appear una-
ligned regarding the input. The simple approach to face this mis-
alignment problem is a replication of the matching logic linear to
the amount of character processed per clock cycle.

The last two naive strategies to increase the throughput re-
quires resources to invest in hardware replication. In this work
we propose a not naive multi-character approach which reduces
considerably the hardware replication. Our architecture solves
the misalignment problem in real time. The hardware consump-
tion presented is lower than that obtained in naive strategies for
multi-character architectures. The implementation for four charac-
ters per cycle utilizes 63% of a FPGA Virtex5 fx100t device. For a
signature set counting more than 84,000 characters the architec-
ture achieves a throughput of 6.4 Gbps. Our strategy is to invest re-
sources in a cost-effective alignment pre-detection and correction
phase. In doing so, resources sharing are possible and the replica-
tion of the hardware is reduced.

In this work we take leverage of the fact that in a set of strings,
each string may have a substring which is unique regarding the
rest of the members in the set. The length of the unique substring
may be equal or lower than its substring; in case of being equal, the
unique substring is the string itself. For the set of signatures in-
cluded in the most popular Network Intrusion Detection System,
Snort, the length of unique substrings tend to be shorter than the
length of the container signatures.

The proposed architecture consists of two processing steps. In
the first step, the signature unique substrings are matched obtain-
ing the alignment of the candidate signature. A candidate signature
indicates a signature likely to exists in the data flow. In the second
step the inputs of signature matchers are aligned in correspondence
with the information provided by the first step. Since the signature
matchers inputs will be aligned with the candidate signature in real
time, no hardware replication will be needed in the second step.

We present a method and corresponding hardware architecture
for string matching. A previous work that addresses a similar prob-
lem was published in [3]. This described an architecture that de-
tects and corrects the signature alignment in the data flow
through a unique substring predetection. This work presents a
completely new architecture aimed at obtaining a significant
reduction in area requirements when compared to the previous re-
ported work. The main contributions of this work are twofold:

e Reduction of area resources of around 40% when compared
against the naive approach for multi-character architecture.

e A new partitioning criterion named security threshold which
allows resources sharing and the elimination of ambiguities in
matching process due to the misalignment problem.

The rest of the paper is as follows. In Section 2 we expose the
works related with special emphasis in multi-character architec-
tures in both, naive and not naive approaches. In Section 3, the cen-
tral ideas and our partitioning scheme are explained in detail. In
Section 4, the architecture is presented as well as its functioning.
The results of the implementation and tests are discussed in Sec-
tion 5. Conclusions and future work will be exposed in Section 6.

2. Related work

In general, the most part of hardware-based solutions for string
matching fall into the following categories. Brute Force compara-
tors (BF) [4,5,7], Automata based architectures with the Aho-Coras-
sick automaton (AC) as the most implemented [2,3,8,11-13,20].
Content Addressable Memory based (CAM) architectures [6], and
Hash based architectures [10]. Naturally, there are combinations
of them [22,24,17-19].

Naive multi-character architectures has been proposed in [4-9].
Sourdis et al. [4] proposed pipelines of discrete characters compar-
ators in order to match an entire string. Their four-character input
version was capable of achieving more than 10 Gbps. In a shift-
and-compare pipeline, each character line feeds a shift register,
by selecting the proper offsets, the character lines are “ANDed”
to obtain a final match for a corresponding string. Sourdis et al.
[5] proposed a shift-and-compare architecture using SLR16 shift
register, while Baker and Prassana in [7] proposed partitioning
scheme that allows resource sharing. Sung et al. [6] proposed an
algorithm for a CAM memory-based architecture that processes
four bytes per cycle, achieving more than 10 Gbps. Clarck and
Schiemmel [8] perform a deep analysis of the hardware cost when
extending the architecture for processing more bytes per clock cy-
cle. They proposed a NFA logic-based architecture, where they can
reach the impressive throughput of 99 Gbps. However, due to the
high hardware cost introduced they just match up to 250 charac-
ters. Hardware implementation of the shift-or algorithm is pro-
posed in [9]. Processing four character per cycle they achieve
16 Gbps for a 1500 character set.

In [10] the double port feature of modern embedded memory
blocks are employed to process 2 bytes per cycle. Their architec-
ture uses hashing in a first step to identify a possible match.
Then, in a second step, the string is fetched from memory and
is compared one-to-one with the characters in the data flow.
Yang et al. [11] present a multi-character logic-based regular
expression matching architecture. They propose an algorithm
for extending regular expression to multi-character. Additionally,
they propose the implementation of character classes operators
using embedded RAM. Similarly, in [12] static strings which are
part of regular expressions are detected by a classical AC using
an off-chip memory, then logic-based NFAs match the regular
expression metacharacters. A memory-based multi-character reg-
ular expression matching architecture is proposed by Brodie et al.
in [13]. They define the concept of Equivalent Class Index, ECI. An
ECI represents multiples sequences of characters sharing the
same states in a multi-character-extended NFA. Their architecture
first encode the data flow into ECI characters, then it uses an state
machine to implement the NFA. In addition, they apply several
optimizations and codifications for reducing the amount of mem-
ory required per NFA state. Yiang et al. [2] Proposed a pipelined
and multi-character AC automaton where failure transitions are
not needed since each level of the AC trie has its own hardware.
A similar approach is proposed in [14], where the firsts states of
the AC automaton are implemented using a pipeline of binary
search trees.

A not naive multi-character memory-based architecture is pro-
posed by Cho et al. in [15]. They use the string prefix for pre-detec-
tion and alignment correction. Since several strings may have the
same prefix, the string set must be partitioned so that each string
in a subset possesses a unique prefix. The same strategy is used by
in Chang et al. [16] with the difference that instead of memories,
and brute force matching, they use logic-based NFA matchers. Ser-
rano et al. [3] proposed the use of unique substrings instead of un-
ique prefixes, since unique substrings tend to be shorter and better
suited as partitioning criterion.

Download English Version:

https://daneshyari.com/en/article/463031

Download Persian Version:

https://daneshyari.com/article/463031

Daneshyari.com

https://daneshyari.com/en/article/463031
https://daneshyari.com/article/463031
https://daneshyari.com/

