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a b s t r a c t

Evolution of solitary waves in photovoltaic–photorefractive crystal satisfy the paraxial
equation. The paraxial equation is transformed into the symplectic structure of the infinite
dimensional Hamiltonian system. The symplectic structure of the paraxial equation is dis-
cretizated by the symplectic method. The corresponding symplectic scheme preserves con-
servation of discrete energy which reflects conservation of energy of the paraxial equation.
The symplectic scheme is applied to simulate the solitary wave behaviors of the paraxial
equation. Evolution of the solitary waves with the different applied electric field and the
different photovoltaic fields are investigated.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Spatial solitons have attracted a great deal of attention because of their possible applications for optical switching and
routing. Besides the electromagnetic field solitons, refractive index solitons have also been investigated in photorefractive
(PR) media [1]. Several generic types of wave-field PR solitons have been predicated and observed thus far, including
quasi-steady-state solitons [5], screen solitons [23], photovoltaic solitons [2], screening photovoltaic solitons [16] and spatial
solitons in PR centrosymmetric materials [21] and in anisotropic nonlinear media [24], all of which result from the single
photon photorefactive effect. Very recently single beam bright and dark solitons in two-photon photorefactive materials
have been predicated, which result from the two-photon PR effect [11].

In one dimensional, the propagation of the solitary waves of the photovoltaic–photorefractive crystal is described by the
paraxial equation [14–17,22,25,30]
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Here i is the imaginary unit, / describes a complex envelope of the light field, k = k0ne, k0 = 2p/k0, k0 is the wavelength in the
vacuum, ne is the unperturbed refractive index and reff is the effective linear electro-optic coefficient,
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is the space-charge field. E0 is the applied electronic field and Ep is the photovoltaic field, KB is constant, T is the absolute
temperature, e is the unite charge, Id is the dark radiation intensity, I1 = I(x,z)jx?1. Numerical simulations of the solitary
waves of the paraxial equation have been investigated. In [31], three classes of (1 + 1)-D lattices solitons, including funda-
mental solitons, high-order lattices solitons and out-of phase dipole lattices solitons, were obtained by numerical integration
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of the theoretical model. In [29], the temporal behaviors of one single laser pulse in a photorefractive medium were simu-
lated by the beam propagation method.

Recently, attention has been paid to the symplectic geometry [3,4,7–9,20]. A great deal of numerical experiments have
shown the superiority of symplectic schemes over the nonsymplectic ones, especially, in structural, global and long-term
tracking capabilities [6,12,13,18,26–28]. In this paper, the symplectic method is applied to simulate the solitary wave behav-
iors of the paraxial equation.

The paper is organized as follows. The symplectic scheme of the paraxial equation is obtained in Section 2. The energy
conservation of the paraxial equation and of the symplectic scheme are proved in Section 3. In Section 4, the solitary wave
behaviors of the paraxial equation are investigated by numerical simulations.

2. Symplectic scheme of the paraxial equation

Eq. (1) can be normalized using similar conventions as in the continuous regime. The scale transformations
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/, where x0 is an arbitrary spatial scale (whatever the value of the arbitrary spatial scale

x0), are adopted. A new propagation equation can derived [10,14,30], depending on the orientation of the beam electric field
u,
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where the applied electric field b ¼ ðk0x0Þ2 n4
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Ep are constants. The
boundary conditions for bright spatial solitons are: q = I1/Id = 0. Eq. (3) is equivalent to
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Take u = p + iq, Eq. (4) can be expressed as
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Take z = (p,q)T, Eqs. (5) and (6) can be expressed in the infinite Hamiltonian form
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where z = (p,q), the corresponding Hamiltonian function is

HðzÞ ¼
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Now we can discrete the spatial domain of Eq. (7) and expect to obtain a finite-dimensional Hamiltonian system. As in
[19], denoting the 2mth order central difference operator for B ¼ @

@s2 by Bð2mÞ, we have
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where bj = [(j!)222j]/[(2j + 1)!(j + 1)] and r+, r� are forward and backward difference operators, and Ds is the spatial step
length.

Denoting by N the number of the spatial grid points, and letting P = [p1,p2, . . . ,pN], Q = [q1,q2, . . . ,qN], Z = (P,Q)T, Eq. (7) is
transformed into the finite dimensional Hamiltonian system
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with the corresponding Hamiltonian function
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where B(2m) is N � N matrix. Applying the fourth order difference scheme along the s direction, we obtain
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