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In this paper, two iterative algorithms are proposed to solve the linear matrix equations
A1XB1 þ C1XT D1 ¼ M1; A2XB2 þ C2XT D2 ¼ M2. When the matrix equations are consistent,
by the first algorithm, a solution X� can be obtained within finite iterative steps in the
absence of roundoff-error for any initial value, furthermore, the minimum-norm solution
can be got by choosing a special kind of initial matrix. Additionally, the unique optimal
approximation solution to a given matrix X0 can be derived by finding the minimum-norm
solution of a new matrix equations A1

eXB1 þ C1
eXT D1 ¼ M1; A2

eXB2 þ C2
eXT D2 ¼ M2. When

the matrix equations are inconsistent, we present the second algorithm to find the least-
squares solution with the minimum-norm. Finally, two numerical examples are tested
by MATLAB, the results show that these iterative algorithms are efficient.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Matrix equations are often encountered in many areas of computational mathematics, control and system theory.
Research on solving linear matrix equations has been actively engaged in for many years. For example, Navarra et al. studied
a representation of the general common solution of the matrix equations A1XB1 ¼ C1; A2XB2 ¼ C2 [1]; van der Woude
obtained the existence of a common solution X for the matrix equations AiXBj ¼ Cij [2]; Bhimasankaram considered the linear
matrix equations AX ¼ B; CX ¼ D and EXF ¼ G [3]; Mitra has provided conditions for the existence of a solution and a
representation of the general common solution of the matrix equations AX ¼ C; XB ¼ D and the matrix equations
A1XB1 ¼ C1; A2XB2 ¼ C2 [4,5].

Traditionally, linear matrix equations can be converted into their equivalent forms by using the Kronecker product. How-
ever, in order to solve the equivalent forms, the inversion of the associated large matrix need be involved, which leads to
computational difficulty because excessive computer memory is required. For this reason, iterative approaches for solving
matrix equations and recursive identification for parameter estimation have always received much attention in recent years,
e.g. Peng et al. constructed an iteration method to solve the linear matrix equations AXB ¼ C and A1XB1 ¼ C1; A2XB2 ¼ C2

over symmetric solution X [6,7]; Cai and Chen proposed an iterative algorithm for the least squares bisymmetric solutions
of the matrix equations A1XB1 ¼ C1; A2XB2 ¼ C2 [8]; Liao and Lei found the least-squares solution with the minimum-norm
for the matrix equation ðAXB;GXHÞ ¼ ðC;DÞ by making use of the generalized singular value decomposition and the canonical
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correlation decomposition [9]. Dehdi and Hajarian studied the iterative algorithm for the reflexive solutions of generalized
coupled Sylvester matrix equations [10]; Wang et al. proposed two iterative algorithm to solve the matrix equations
AXBþ CXT D ¼ E [11].

Recently, Ding et al. proposed a new hierarchical identification algorithm which was based on gradient search principle
for solving linear matrix equations [12–14,17–20]. In these articles, the problem was discussed by applying the so-called
hierarchical identification principle. Using the hierarchical identification method, a linear system is decomposed into some
subsystems, and then the unknown parameters of each subsystems are identified successively, e.g., the linear matrix equa-
tion AXBþ CXD ¼ F can be decomposed into two subsystems [20] AXB ¼ F1 and CXD ¼ F2 to be identified successively, where
F1 ¼ F � CXD; F2 ¼ F � AXB. Meanwhile, the convergence rate has some connection with convergence factor l.

In this paper, we mainly propose a conjugate gradient algorithm (CG) to solve the matrix equations: A1XB1 þ C1XT D1 ¼
M1; A2XB2 þ C2XT D2 ¼ M2.

As a matter of convenience, we first introduce some notations. Rm�n is the set of m� n all real matrices and Rm ¼ Rm�1.
AT ; RðAÞ denote the transpose and column space of matrix A; A� B represents the Kronecker product of two matrices A

and B, vec (�) is the stretching vector operator, i.e. vecðAÞ ¼ ðaT
1; a

T
2; . . . ; aT

nÞ
T for the matrix A ¼ ða1; a2; . . . ; anÞ 2 Rm�n

(ai 2 Rm; i ¼ 1;2; . . . ;n). At the same time, we define the inner product of two matrices A;B 2 Rm�n as hA;Bi ¼ traceðBT AÞ, then

the matrix norm of A induced by the inner product is Frobenius norm and denoted by kAk, i.e. kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hA;Ai

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðAT AÞ

q
.

For A;B 2 Rm�n, if hA;Bi ¼ 0, then we say that A and B are orthogonal. Suppose nonzero matrices A1;A2; . . . ;Ak 2 Rm�n, and
hAi;Aji ¼ 0 for all i – j, we call fAigk

i¼1 orthogonal matrix sequences, it is obvious that A1;A2; . . . ;Ak is linear independent.
Next, we find the solutions of the following linear matrix equation (1.1), which includes minimum-norm solution,

optimal approximation solution to a given matrix and the least-squares solution with the minimum-norm.

A1XB1 þ C1XT D1 ¼ M1;

A2XB2 þ C2XT D2 ¼ M2;

(
ð1:1Þ

where, A1;A2 2 Rp�m; B1;B2 2 Rn�q; C1;C2 2 Rp�n; D1;D2 2 Rm�q; M1;M2 2 Rp�q are given constant matrices, X 2 Rm�n is an
unknown matrix to be solved.

2. An iterative method when (1.1) is consistent

In this section, we first give a necessary and sufficient condition of the consistency of the linear matrix equation (1.1), and
construct the recursive equation, after that, an iterative algorithm is proposed to solve (1.1).

According to Theorem 4.3.8. and Corollary 4.3.10. in [15], there exists a permutation matrix Pmn such that

vecðXTÞ ¼ PmnvecðXÞ:

Pmn is constructed as follows [15,16], let Pmn 2 Rmn�mn be a square matrix of order mn, which partitioned into m� n
submatrices such that the ijth submatrix has a 1 in its jith position and zeros elsewhere, i.e.

Pmn ¼
Xm

i¼1

Xn

j¼1

Eij � ET
ij;

where Eij ¼ eieT
j is the elementary matrix of order m� n, and ei 2 Rmðej 2 RnÞ is a column vector with a unity in the ith (jth)

position and zeros elsewhere. Then, we have

PmnPnm ¼ Imn; PT
mn ¼ P�1

mn ¼ Pnm; PnmvecðXTÞ ¼ vecðXÞ;

and

B� A ¼ PT
mpðA� BÞPnq;

where, A 2 Rm�n; B 2 Rp�q

Then, (1.1) can be equivalently written as

BT
1 � A1 þ ðDT

1 � C1ÞPmn

BT
2 � A2 þ ðDT

2 � C2ÞPmn

 !
vecðXÞ ¼

vecðM1Þ
vecðM2Þ

� �
¼ vecðM1;M2Þ: ð2:1Þ

The following result is well-known.

Lemma 1. Let

S :¼
BT

1 � A1 þ ðDT
1 � C1ÞPmn

BT
2 � A2 þ ðDT

2 � C2ÞPmn

 !
2 R2pq�mn;

then, Eqs. (1.1) is consistent if and only if
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