
TAGE iterative algorithm and nonpolynomial spline basis for the solution
of nonlinear singular second order ordinary differential equations

Navnit Jha a,⇑, R.K. Mohanty b

a Department of Mathematics, Rajiv Gandhi Institute of Petroleum Technology, Rae Bareli, UP 229316, India
b Department of Mathematics, Faculty of Mathematical Sciences, University of Delhi, Delhi 110 007, India

a r t i c l e i n f o

Keywords:
Parallel method
TAGE algorithm
Nonpolynomial spline functions
Singular equations
Second order ODE
Execution time

a b s t r a c t

In the present paper, we discuss three point difference method based on nonpolynomial
spline basis for the second order ordinary differential equation. Difference schemes are
derived for linear and nonlinear case and are used to solve via two parameter alternating
group explicit iterative algorithm. The schemes have a fourth and second order of uniform
convergence for the choice of the parameters involved in the method. Computational
results are presented comparing the two methods in terms of accuracy and execution
times. The results indicate the advantage of using parallel implementation of the new
method.
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1. Introduction

We consider solving the following second order ordinary differential equations (ODE)

y00 ¼ Fðx; y; y0Þ; yð0Þ ¼ ya; yð1Þ ¼ yb; 0 6 x 6 1; ð1:1Þ

where F(x,y,y0) is twice continuously differentiable in the region. The analytical solution of (1.1) for arbitrary choice of the
function F cannot be found in general. Some of the numerical methods for the approximate solution and design of parallel
algorithm for (1.1) have been provided in the references [1,2]. Many papers have appeared dealing with the continuous
approximation of y(x) via spline [3–8]. Pandey and Singh [9] considered second order convergence for a class of two point
boundary value problems arising in physiology. Recently researchers have developed a C1-differentiable nonpolynomial
spline basis that compensates the loss of smoothness inherited by polynomial splines, for the approximate solution of linear
two point boundary value problems [10–12].

Numerical computations of nonlinear Eq. (1.1), had been experiencing difficulties in singular cases. Some solutions have
been offered in this regard. One such being – Rashidinia et al. [13] considered nonpolynomial spline solution for a class of
singular boundary value problems involving nonlinearity in y only, where the computational order of convergence fails to
match with the fourth order of theoretical estimates. Hence, in this article there is being made fair attempt to introduce
an efficient fourth order accurate method for the solution of nonlinear singular second order ODE and the application of
two parameter alternating group explicit (TAGE) and Newton-TAGE method proposed by Sukon and Evans [14] and Evans
[15]. Since these methods are explicit in nature and coupled compactly, they are suitable for use on parallel computers.
We compare the computational results obtained by the proposed methods with corresponding SOR and Newton-SOR
method.
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2. Derivation of the nonpolynomial spline methods

Consider the partitioning {xk :xk = kh,k = 0(1)N + 1,h = 1/(N + 1)} and let Sk(x) be the interpolating nonpolynomial which
interpolates y(x) at xk defined as follows

SkðxÞ ¼ ak sinsðx� xkÞ þ bk cos sðx� xkÞ þ ckðx� xkÞ þ dk; k ¼ 0ð1ÞN; ð2:1Þ

where ak, bk, ck, and dk are constants and s is the frequency of the trigonometric functions. In order to calculate the coeffi-
cients of Eq. (2.1), we first need to define (see [10]):

S00kðxkÞ ¼ Mk; SkðxkÞ ¼ yk; k ¼ 0ð1ÞN: ð2:2Þ

We obtain via algebraic calculations the following expressions

ak ¼
h2

h2 sin h
ðMk cos h�Mkþ1Þ; bk ¼ �

h2

h2 Mk;

ck ¼
1
h
ðykþ1 � ykÞ þ

h

h2 ðMkþ1 �MkÞ; dk ¼ yk þ
h2

h2 Mk;

where h = hs.
From the continuity of the first derivatives of Sk�1(x) and Sk(x) at x = xk for k = 1(1)N, i.e. S0k�1ðxkÞ ¼ S0kðxkÞ; k ¼ 1ð1ÞN, we

obtain

yk�1 � 2yk þ ykþ1 � h2ðaMk�1 þ 2bMk þ aMkþ1Þ ¼ 0; k ¼ 1ð1ÞN: ð2:3Þ

where

a ¼ 1
h sin h

� 1
h2 ; b ¼ 1

h2 �
1
h

cot h:

Now, consider the following approximations

Mk�1 ¼ F xk�1; yk�1;
1

2h
�3yk�1 � 4yk � yk�1

� �� �
; ð2:4Þ

Mk ¼ F xk; yk;
1

2h
ðykþ1 � yk�1Þ �

h
20
ðMkþ1 �Mk�1Þ

� �
: ð2:5Þ

The spline scheme 2.3 and 2.4, 2.5 is second and fourth order of uniform convergence for (a,b) = (1/6,1/3) and (1/12,5/12)
respectively. (see [11]).

3. Development of difference equations

We now consider the application of nonpolynomial spline formula (2.3) to the linear singular equation

y00 ¼ f ðxÞ � aðxÞy0 � bðxÞy; 0 6 x 6 1: ð3:1Þ

From (2.3) and (3.1), after carrying out necessary algebra, we obtain

ð1� hbakÞyk�1 � 2ð1� h2bbkÞyk þ ð1þ hbakÞykþ1 � 2h2bfk

¼ h
2

h
5
ðhbak � 10aÞbk�1 �

h
10

bakðakþ1 þ 3ak�1Þ � aðakþ1 � 3ak�1Þ
� �

yk�1

� h
2

h
5
ðhbak þ 10aÞbkþ1 þ

h
10

bakð3akþ1 þ ak�1Þ þ að3akþ1 � ak�1Þ
� �

ykþ1

þ h
5

hbðakþ1 þ ak�1Þak þ 10aðakþ1 � ak�1Þð Þyk þ
h3

10
bakðfkþ1 � fk�1Þ þ h2aðfkþ1 þ fk�1Þ: ð3:2Þ

The spline scheme (3.2) is of fourth and second order of convergence However, the scheme fails when the solution is to be
determined at k = ±1. We overcome this difficulty by modifying the method in such a way that the solutions retain the order
and accuracy even in the vicinity of the singularity x = 0. We use the Taylor’s expansions

ak�1 ¼ ak � ha0k þ
h2

2
a00k �

h3

6
a000k þ

h4

24
a
0000

k �
h5

120
a00000k þ Oðh6Þ etc: ð3:3Þ

Substituting the Taylor’s approximations of ak±1, bk±1 and fk±1 into Eq. (3.2) and neglecting higher order terms, we get a linear
difference equation of the form

sbkyk�1 þ 2dgkyk þ spkykþ1 ¼ RHk; k ¼ 1ð1ÞN; ð3:3Þ
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