Error analysis of large-time approximations for decay chains

Frank Massey *, Jeffrey Prentis

University of Michigan-Dearborn, Dearborn, MI 48128, United States

A R T I CLE IN F O

Keywords:

Radioactive decay chain
Transient equilibrium
Bateman's formula
Large-time approximation
Error bound
Exponential convolution
Reduced chain

Abstract

Consider a radioactive decay chain $X_{1} \rightarrow \cdots \rightarrow X_{n} \rightarrow$ and let $N_{n}(t)$ be the amount of X_{n} at time t. This paper establishes error bounds for large-time approximations to $N_{n}(t)$ that include and generalize the transient equilibrium approximations and other known approximations. The error bounds allow one to find the range of t for which these approximations can be used with a given degree of precision.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Consider a radioactive decay chain $X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{n} \rightarrow$ where a fraction b_{j} of the nuclide X_{j} decays into X_{j+1} with decay constant λ_{j} and half-life $T=\ln (2) / \lambda_{j}$. The remaining fraction $1-b_{j}$ of X_{j} decays with the same decay constant λ_{j} into other nuclides outside the chain. If X_{n} is stable then $\lambda_{n}=0$. Let $N_{j}(t)$ be that portion of the amount of X_{j} present at time t that has been produced by decays following the chain. The $N_{j}(t)$ satisfy the radioactive decay equations:

$$
\begin{align*}
& d N_{1} / d t=-\lambda_{1} N_{1} \\
& d N_{j} / d t=b_{j-1} \lambda_{j-1} N_{j-1}-\lambda_{j} N_{j} \quad \text { for } j \geqslant 2 \tag{1}
\end{align*}
$$

see Segrè [1, p. 172]. If $N_{j}(0)=0$ for $j \geqslant 2$ then Bateman's formula [2] for $N_{n}(t)$ is

$$
\begin{equation*}
N_{n}(t)=N_{1}(0) b_{1, n} \lambda_{1, n} E_{n}\left(t ; \lambda_{1}, \ldots, \lambda_{n}\right), \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& E_{n}\left(t ; \lambda_{1}, \ldots, \lambda_{n}\right)=\sum_{j=1}^{n} C_{j} e^{-\lambda_{i j} t}, \tag{3}\\
& b_{i, j}=b_{i} b_{i+1} \cdots b_{j-1} \quad \text { and } \quad \lambda_{i, j}=\lambda_{i} \lambda_{i+1} \cdots \lambda_{j-1} \quad \text { and } \quad C_{j}=\prod_{\substack{i=1 \\
i \neq j}}^{n}\left(\lambda_{i}-\lambda_{j}\right)^{-1}
\end{align*}
$$

and $b_{i, i}=\lambda_{i, i}=1$ and $E_{1}(t ; \lambda)=e^{-\lambda t}$. This formula is only defined if all the λ_{j} are distinct. Formulas for $E_{n}\left(t ; \lambda_{1}, \ldots, \lambda_{n}\right)$ when some of the λ_{j} are equal are more complicated; see Mathai [3, Section 2] and Cetnar [4, Section 3].

There are several useful large-time approximations for $N_{n}(t)$. These involve the smallest of $\lambda_{1}, \ldots, \lambda_{n}$ which we denote by λ_{p}. Note that in (3) the $e^{-\lambda_{j} t}$ for $j \neq p$ go to zero faster than $e^{-\lambda_{p} t}$ as $t \rightarrow \infty$ which implies

[^0]\[

$$
\begin{equation*}
N_{n}(t) \approx N_{1}(0) a e^{-\lambda_{p} t} \tag{4}
\end{equation*}
$$

\]

for large t with $a=b_{1, n} \lambda_{1, n} C_{p}$. This approximation holds in the sense that $N_{n}(t) /\left[N_{1}(0) a e^{-\lambda_{p} t}\right] \rightarrow 1$ as $t \rightarrow \infty$. The approximation (4) is widely used, see e.g. Rutherford et al. [5, p. 3] and Segrè [1, p. 174]. However, we could find no mention of how accurate it is. The following theorem gives an error bound for this approximation.

Theorem 1. Let λ_{p} and λ_{q} be the smallest and 2nd smallest of $\lambda_{1}, \ldots, \lambda_{n}$ respectively and $a=b_{1, n} \lambda_{1, n} C_{p}$. Assume $\lambda_{p}<\lambda_{q}$ and λ_{q} is strictly less than the $3 r d$ smallest of $\lambda_{1}, \ldots, \lambda_{n}$. Then

$$
\begin{equation*}
\left|N_{n}(t)-N_{1}(0) a e^{-\lambda_{p} t}\right| \leqslant c e^{-\left(\lambda_{q}-\lambda_{p}\right) t} N_{1}(0) a e^{-\lambda_{p} t} \tag{5}
\end{equation*}
$$

where $c=\prod_{j=1}^{n}\left(\lambda_{j}-\lambda_{p}\right) /\left(\lambda_{j}-\lambda_{q}\right)$.
Theorem ${ }^{j} \neq 14$ the special case of Theorem 3 below when $m=1$ in that theorem. Note that it follows from (5) that the relative error in (4) will be less than ε if $t>\ln (c / \varepsilon) /\left(\lambda_{q}-\lambda_{p}\right)$, which tells how large t must be for (4) to hold with a given degree ε of precision. In particular, the relative error in (4) will be small if t is large compared to the second largest half-life unless the second largest half-life is close to the largest. See Example 1 in Section 3 for a typical application of Theorem 1.

Products like the one defining c in Theorem 1 appear in a number of the inequalities below, so it is useful to make the following definition.

Definition 1. Let α_{p} and α_{q} be the smallest and second smallest of $\alpha_{1}, \ldots, \alpha_{k}$. If β is different from $\alpha_{1}, \ldots, \alpha_{k}$ and α_{q} is strictly smaller than the third smallest of the α_{j} let

$$
\begin{aligned}
& \phi\left(\alpha_{1}, \ldots, \alpha_{k} \mid \beta\right)=\prod_{\substack{j=1}}^{k} \alpha_{j} /\left(\alpha_{j}-\beta\right), \\
& \chi\left(\alpha_{1}, \ldots, \alpha_{k}\right)=\prod_{\substack{j=1 \\
j \neq p, q}}^{k}\left(\alpha_{j}-\alpha_{p}\right) /\left(\alpha_{j}-\alpha_{q}\right) .
\end{aligned}
$$

In the case $k=2$ let $\chi\left(\alpha_{1}, \alpha_{2}\right)=1$.
Note that $\chi\left(\alpha_{1}, \ldots, \alpha_{k}\right) \approx 1$ if α_{q} is substantially smaller than the third smallest of the α_{j} which occurs frequently in decay chains. Also note that $c=\chi\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ in Theorem 1.

Another useful approximation is

$$
\begin{equation*}
N_{n}(t) \approx a N_{k}(t) \tag{6}
\end{equation*}
$$

for large t; see Segrè [1, p. 174]. Here $p \leqslant k<n$ and $a=\left(b_{k, n} \lambda_{k} \mid \lambda_{n}\right) \phi\left(\lambda_{k+1}, \lambda_{k+2}, \ldots, \lambda_{n} \mid \lambda_{p}\right)$ and (6) holds in the sense that $N_{n}(t) /$ $\left[a N_{k}(t)\right] \rightarrow 1$ as $t \rightarrow \infty$. One way to see that this is valid is to apply (4) to both $N_{n}(t)$ and $N_{k}(t)$ giving $N_{n}(t) /\left[N_{1}(0) b_{1, n} \lambda_{1, n} C_{p} e^{-\lambda_{p} t}\right] \rightarrow 1$ and $N_{k}(t) /\left[N_{1}(0) b_{1, k} \lambda_{1, k} C_{p, k} e^{-\lambda_{p} t}\right] \rightarrow 1$ as $t \rightarrow \infty$ where $C_{p, k}=\prod_{\substack{i=1 \\ i \neq p}}^{k}\left(\lambda_{i}-\lambda_{p}\right)^{-1}$. Dividing gives $N_{n}(t) /\left[a N_{k}(t)\right] \rightarrow 1$ as $t \rightarrow \infty$. The following theorem gives two error bounds for (6). The first, (7), is similar to (5) while (8) shows that the approximation (6) is good for a larger range of values of t than (7). However (8) is not always applicable.

Theorem 2. Let λ_{p} and λ_{q} be the smallest and 2 nd smallest of $\lambda_{1}, \ldots, \lambda_{n}$ respectively, $p \leqslant k<n$ and $a=\left(b_{k, n} \lambda_{k} \mid \lambda_{n}\right) \phi$ $\left(\lambda_{k+1}, \lambda_{k+2}, \ldots, \lambda_{n} \mid \lambda_{p}\right)$. For (7) assume $\lambda_{p}<\lambda_{q}$ and λ_{q} is strictly less than the 3rd smallest of $\lambda_{1}, \ldots, \lambda_{n}$ and let $c=\chi\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. For (8) assume λ_{q} is strictly less than all of $\lambda_{k+1}, \ldots, \lambda_{n}$ and let $W=(k-1) \chi\left(\lambda_{p}, \lambda_{q}, \lambda_{k+1}, \ldots, \lambda_{n}\right) \sum_{j=k+1}^{n} 1 /\left(\lambda_{j}-\lambda_{p}\right)$. Then

$$
\begin{align*}
& \left|N_{n}(t)-a N_{k}(t)\right| \leqslant c e^{-\left(\lambda_{q}-\lambda_{p}\right) t} a N_{k}(t) \tag{7}\\
& \left|N_{n}(t)-a N_{k}(t)\right| \leqslant a N_{k}(t) W / t \tag{8}
\end{align*}
$$

Theorem 2 is the special case of Theorem 3 when $m=k$ and $\sigma(j)=j$ for $j=1, \ldots, n$ in that theorem. Note that it follows from (8) that if $q<p$ then the relative error in (6) will be less than ε if $t>W / \varepsilon$. Again, this tells how large t must be for (6) to hold with a given degree of precision. If fact, if $\lambda_{k+1}, \ldots, \lambda_{n}$ are all substantially larger than λ_{q} then W will be of the same order of magnitude as the largest of the half-lives of X_{k+1}, \ldots, X_{n}. In this case the relative error in (6) will be small if t is large compared to the half-lives of X_{k+1}, \ldots, X_{n}. This will be a larger range of values of t than the range implied by (7). For a typical application, see Example 1 in Section 3.

The activity, $A_{j}(t)$ of X_{j} is the rate of decay of X_{j}, i.e. $A_{j}(t)=\lambda_{j} N_{j}(t)$. It follows from (6) that $A_{n}(t) / A_{p}(t) \approx b_{p, n}\left[\lambda_{p+1} /\right.$ $\left.\left(\lambda_{p+1}-\lambda_{p}\right)\right] \cdots\left[\lambda_{n} /\left(\lambda_{n}-\lambda_{p}\right)\right]$ for large t. In other words the activity of X_{n} is approximately proportional to that of X_{p} for large t, a situation that is termed transient equilibrium; see Segrè [1, p. 174].

A generalization of (4) and (6) is obtained by approximating the original chain by a reduced chain that is obtained by deleting some nuclides with small half-lives, usually the nuclides whose half-lives are less than a certain threshold. This type of approximation is also widely used; see e.g. Benedict et al. [6, p. 39], Ball and Adams [7], Bell [8] and Thomas and Barber [9]. To be precise, assume the following.

https://daneshyari.com/en/article/4630336

Download Persian Version:
https://daneshyari.com/article/4630336

Daneshyari.com

[^0]: * Corresponding author. Address: Department of Mathematics \& Statistics, University of Michigan-Dearborn, Dearborn, MI 48128, United States.

 E-mail address: fmassey@umd.umich.edu (F. Massey).

