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a b s t r a c t

Consider a radioactive decay chain X1 ? � � �? Xn? and let Nn(t) be the amount of Xn at time
t. This paper establishes error bounds for large-time approximations to Nn(t) that include
and generalize the transient equilibrium approximations and other known approxima-
tions. The error bounds allow one to find the range of t for which these approximations
can be used with a given degree of precision.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Consider a radioactive decay chain X1 ? X2 ? � � �? Xn ? where a fraction bj of the nuclide Xj decays into Xj+1 with decay
constant kj and half-life T = ln(2)/kj. The remaining fraction 1 � bj of Xj decays with the same decay constant kj into other nuc-
lides outside the chain. If Xn is stable then kn = 0. Let Nj(t) be that portion of the amount of Xj present at time t that has been
produced by decays following the chain. The Nj(t) satisfy the radioactive decay equations:

dN1=dt ¼ �k1N1;

dNj=dt ¼ bj�1kj�1Nj�1 � kjNj for j P 2;
ð1Þ

see Segrè [1, p. 172]. If Nj(0) = 0 for j P 2 then Bateman’s formula [2] for Nn(t) is

NnðtÞ ¼ N1ð0Þb1;nk1;nEnðt; k1; . . . ; knÞ; ð2Þ

where

Enðt; k1; . . . ; knÞ ¼
Xn

j¼1

Cje�kj t ; ð3Þ

bi;j ¼ bibiþ1 � � � bj�1 and ki;j ¼ kikiþ1 � � � kj�1 and Cj ¼
Yn

i¼1
i–j

ðki � kjÞ�1

and bi,i = ki,i = 1 and E1(t ;k) = e�kt. This formula is only defined if all the kj are distinct. Formulas for En(t ;k1, . . . ,kn) when some
of the kj are equal are more complicated; see Mathai [3, Section 2] and Cetnar [4, Section 3].

There are several useful large-time approximations for Nn(t). These involve the smallest of k1, . . . ,kn which we denote by
kp. Note that in (3) the e�kj t for j – p go to zero faster than e�kpt as t ?1 which implies
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NnðtÞ � N1ð0Þae�kpt ð4Þ

for large t with a = b1,nk1,nCp. This approximation holds in the sense that NnðtÞ=½N1ð0Þae�kpt� ! 1 as t ?1. The approximation
(4) is widely used, see e.g. Rutherford et al. [5, p. 3] and Segrè [1, p. 174]. However, we could find no mention of how accurate
it is. The following theorem gives an error bound for this approximation.

Theorem 1. Let kp and kq be the smallest and 2nd smallest of k1, . . . ,kn respectively and a = b1,nk1,nCp. Assume kp < kq and kq is
strictly less than the 3rd smallest of k1, . . . ,kn. Then

jNnðtÞ � N1ð0Þae�kpt j 6 ce�ðkq�kpÞtN1ð0Þae�kpt ð5Þ

where c ¼
Qn

j¼1
j–p;q
ðkj � kpÞ=ðkj � kqÞ.

Theorem 1 is the special case of Theorem 3 below when m = 1 in that theorem. Note that it follows from (5) that the rel-
ative error in (4) will be less than e if t > ln(c/e)/(kq � kp), which tells how large t must be for (4) to hold with a given degree e
of precision. In particular, the relative error in (4) will be small if t is large compared to the second largest half-life unless the
second largest half-life is close to the largest. See Example 1 in Section 3 for a typical application of Theorem 1.

Products like the one defining c in Theorem 1 appear in a number of the inequalities below, so it is useful to make the
following definition.

Definition 1. Let ap and aq be the smallest and second smallest of a1, . . . ,ak. If b is different from a1, . . . ,ak and aq is strictly
smaller than the third smallest of the aj let

/ða1; . . . ;akjbÞ ¼
Yk

j¼1

aj=ðaj � bÞ;

vða1; . . . ;akÞ ¼
Yk

j¼1
j–p;q

ðaj � apÞ=ðaj � aqÞ:

In the case k = 2 let v(a1,a2) = 1.

Note that v(a1, . . . ,ak) � 1 if aq is substantially smaller than the third smallest of the aj which occurs frequently in decay
chains. Also note that c = v(k1, . . . ,kn) in Theorem 1.

Another useful approximation is

NnðtÞ � aNkðtÞ ð6Þ

for large t; see Segrè [1, p. 174]. Here p 6 k < n and a = (bk,nkk/kn)/(kk+1,kk+2, . . . ,knjkp) and (6) holds in the sense that Nn(t)/
[aNk(t)] ? 1 as t ?1. One way to see that this is valid is to apply (4) to both Nn(t) and Nk(t) giving

NnðtÞ=½N1ð0Þb1;nk1;nCpe�kpt � ! 1 and NkðtÞ=½N1ð0Þb1;kk1;kCp;ke�kpt � ! 1 as t ?1 where Cp;k ¼
Qk

i¼1
i–p
ðki � kpÞ�1. Dividing gives

Nn(t)/[aNk(t)] ? 1 as t ?1. The following theorem gives two error bounds for (6). The first, (7), is similar to (5) while (8)
shows that the approximation (6) is good for a larger range of values of t than (7). However (8) is not always applicable.

Theorem 2. Let kp and kq be the smallest and 2nd smallest of k1, . . . ,kn respectively, p 6 k < n and a = (bk,nkk/kn)/
(kk+1,kk+2, . . . ,knjkp). For (7) assume kp < kq and kq is strictly less than the 3rd smallest of k1, . . . ,kn and let c = v(k1, . . . ,kn). For
(8) assume kq is strictly less than all of kk+1, . . . ,kn and let W ¼ ðk� 1Þvðkp; kq; kkþ1; . . . ; knÞ

Pn
j¼kþ11=ðkj � kpÞ. Then

jNnðtÞ � aNkðtÞj 6 ce�ðkq�kpÞtaNkðtÞ; ð7Þ
jNnðtÞ � aNkðtÞj 6 aNkðtÞW=t: ð8Þ

Theorem 2 is the special case of Theorem 3 when m = k and r(j) = j for j = 1, . . . ,n in that theorem. Note that it follows from
(8) that if q < p then the relative error in (6) will be less than e if t > W/e. Again, this tells how large t must be for (6) to hold
with a given degree of precision. If fact, if kk+1, . . . ,kn are all substantially larger than kq then W will be of the same order of
magnitude as the largest of the half-lives of Xk+1, . . . ,Xn. In this case the relative error in (6) will be small if t is large compared
to the half-lives of Xk+1, . . . ,Xn. This will be a larger range of values of t than the range implied by (7). For a typical application,
see Example 1 in Section 3.

The activity, Aj(t) of Xj is the rate of decay of Xj, i.e. Aj(t) = kjNj(t). It follows from (6) that An(t)/Ap(t) � bp,n[kp+1/
(kp+1 � kp)] � � � [kn/(kn � kp)] for large t. In other words the activity of Xn is approximately proportional to that of Xp for large
t, a situation that is termed transient equilibrium; see Segrè [1, p. 174].

A generalization of (4) and (6) is obtained by approximating the original chain by a reduced chain that is obtained by
deleting some nuclides with small half-lives, usually the nuclides whose half-lives are less than a certain threshold. This type
of approximation is also widely used; see e.g. Benedict et al. [6, p. 39], Ball and Adams [7], Bell [8] and Thomas and Barber [9].
To be precise, assume the following.
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