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1. Introduction

Consider a radioactive decay chain X; — X, — --- — X, - where a fraction b; of the nuclide X; decays into Xj.; with decay
constant /; and half-life T = In(2)/4;. The remaining fraction 1 — b; of X; decays with the same decay constant /; into other nuc-
lides outside the chain. If X,, is stable then 2, = 0. Let Nj(t) be that portion of the amount of X; present at time t that has been
produced by decays following the chain. The Nj(t) satisfy the radioactive decay equations:

dN; /dt = —/1N;,

1

de/dt = bj,]).j,]Nj,] - j.ij fOI'j > 2, ( )
see Segre [1, p. 172]. If N0) =0 for j > 2 then Bateman’s formula [2] for Ny(t) is

Nu(t) = N1 (0)by s nEn(t: 1, ., 2n),s (2)
where

n o
En(t;dn,...,0n) = G, 3)
=

n

b,’J = b,‘bpr] [ bj,1 and )Li‘,' = /1,‘),141 cee 2j,1 and Cj = H(/L] — /1j)71
i=1
i#j

and b;; = 4;; =1 and E;(t; A) = e~*. This formula is only defined if all the Jj are distinct. Formulas for Ex(t; 44,. . .,4,) when some
of the 4; are equal are more complicated; see Mathai [3, Section 2] and Cetnar [4, Section 3].

There are several useful large-time approximations for N,(t). These involve the smallest of ;,...,4, which we denote by
Ap- Note that in (3) the e=** for j # p go to zero faster than e~*' as t — co which implies
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Ny (t) =~ Ny (0)ae " (4)

for large t with a = by n41 ,Cp. This approximation holds in the sense that N, (t)/[N;(0)ae~*‘] — 1 as t — co. The approximation
(4) is widely used, see e.g. Rutherford et al. [5, p. 3] and Segreé [1, p. 174]. However, we could find no mention of how accurate
it is. The following theorem gives an error bound for this approximation.

Theorem 1. Let /, and /4 be the smallest and 2nd smallest of 7,..., ., respectively and a = by piq nCp. Assume 1, < 2q and 74 is
strictly less than the 3rd smallest of /1,...,/n. Then

INa(t) — Ny (0)ae '| < ce~Va)N; (0)ae " (5)

where ¢ =TTy (4 — 2)/ (4 — 4q).

Theorem T#§ the special case of Theorem 3 below when m =1 in that theorem. Note that it follows from (5) that the rel-
ative error in (4) will be less than ¢ if £ > In(c/e)/(2q — 7p), which tells how large t must be for (4) to hold with a given degree ¢
of precision. In particular, the relative error in (4) will be small if t is large compared to the second largest half-life unless the
second largest half-life is close to the largest. See Example 1 in Section 3 for a typical application of Theorem 1.

Products like the one defining ¢ in Theorem 1 appear in a number of the inequalities below, so it is useful to make the
following definition.

Definition 1. Let o, and o4 be the smallest and second smallest of o, .. .,o. If f is different from ay,..., 0 and a4 is strictly
smaller than the third smallest of the o; let

k
o, oulB) = [T o/ (%~ ).

k
101, o) = T (05 — o) /(05— ).

In the case k=2 let y(oq,00)=1.

Note that y(o,...,0) ~ 1 if o is substantially smaller than the third smallest of the o; which occurs frequently in decay
chains. Also note that c= x(44,...,4,) in Theorem 1.
Another useful approximation is

N (t) ~ aNi(t) (6)

for large t; see Segré [1, p. 174]. Here p < k <n and a = (bgnAk/2n)$(Zk+1, Aks2, - - -2 An|2p) and (6) holds in the sense that Ny(t)/

[aNi(t)] =1 as t—oo. One way to see that this is valid is to apply (4) to both N,(t) and Ny(t) giving

Nn(t)/[N1(0)by n2q nCpet] — 1 and Ni(t)/[N1(0)b1 A1 xCpre '] — 1 as t —» co where Cpy = Hﬁ‘zl(ii - Ap)’l. Dividing gives
i#=p

Ny(t)/[aN,(t)] = 1 as t — oo. The following theorem gives two error bounds for (6). The first, (7), is similar to (5) while (8)

shows that the approximation (6) is good for a larger range of values of t than (7). However (8) is not always applicable.

Theorem 2. Let 7, and /4 be the smallest and 2nd smallest of 21,...,/n respectively, p<k<n and a=(binpi/in)d
(Ak+1s Aks2s - - -» An|Ap). For (7) assume A, < A4 and Aq is strictly less than the 3rd smallest of 4,...,4, and let ¢ = x(74,...,2). For
(8) assume Aq is strictly less than all of A+1,...,A, and let W = (k — 1)y (Ap, Aq, ks1s - - ,An)zf:kﬂl/(zj — Zp). Then

INn(£) — aNi (t)| < ce” " aNy(t), (7)
INn(t) — aNi ()] < Nk( )W/t (8)

Theorem 2 is the special case of Theorem 3 when m = k and o(j) =j for j = 1,...,n in that theorem. Note that it follows from
(8) that if g < p then the relative error in (6) will be less than ¢ if t > W/e. Again, this tells how large ¢t must be for (6) to hold
with a given degree of precision. If fact, if /+1,...,4, are all substantially larger than /7, then W will be of the same order of
magnitude as the largest of the half-lives of X;.1,...,X,. In this case the relative error in (6) will be small if t is large compared
to the half-lives of Xy.1,. . .,X,. This will be a larger range of values of t than the range implied by (7). For a typical application,
see Example 1 in Section 3.

The activity, A(t) of X; is the rate of decay of X; i.e. Aj(t)=/4Nj(t). It follows from (6) that A,(£)/Ay(t) = bpulip+1/
(Aps1 — 2p)] -+ [An/(An — 7p)] for large t. In other words the activity of X, is approximately proportional to that of X, for large
t, a situation that is termed transient equilibrium; see Segre [1, p. 174].

A generalization of (4) and (6) is obtained by approximating the original chain by a reduced chain that is obtained by
deleting some nuclides with small half-lives, usually the nuclides whose half-lives are less than a certain threshold. This type
of approximation is also widely used; see e.g. Benedict et al. [6, p. 39], Ball and Adams [7], Bell [8] and Thomas and Barber [9].
To be precise, assume the following.



Download English Version:

https://daneshyari.com/en/article/4630336

Download Persian Version:

https://daneshyari.com/article/4630336

Daneshyari.com


https://daneshyari.com/en/article/4630336
https://daneshyari.com/article/4630336
https://daneshyari.com

