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Keywords: In this paper, we first provide comparison results of several types of the preconditioned
Preconditioned AOR (PAOR) method AOR (PAOR) methods for solving a linear system whose coefficient matrix is an L-matrix
L-matrix satisfying some weaker conditions than those used in the recent literature. Next, we pro-
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numerical results are provided to show that Krylov subspace method with the PAOR
preconditioner performs quite well as compared with the ILU (0) preconditioner.
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1. Introduction

In this paper, we consider the following linear system
Ax=b, x,beR" (1)

where A = (a;) € R™" is a nonsingular matrix. The basic iterative method for solving the linear system (1) can be expressed
as

X1 = M N3 +M7'h, k=0,1,..., )

where X, is an initial vector and A=M — N is a splitting of A. T= M~!N is called the iteration matrix of the basic iterative
method (2).

Throughout the paper, we assume that A=1— L — U, where I is the identity matrix, and L and U are strictly lower trian-
gular and strictly upper triangular matrices, respectively. Then the iteration matrix of the AOR iterative method [5] for solv-
ing the linear system (1) is

Tro = (I—1L) (1 - ©)+ (- 1)L+ wU), 3)

where w and r are real parameters with w # 0.
In order to accelerate the convergence of iterative method for solving the linear system (1), the original linear system (1)
is transformed into the following preconditioned linear system

PAx = Pb, (4)

where P, called a preconditioner, is a nonsingular matrix. Wang and Song [14] presented a general form of the preconditioners
P for nonsingular M-matrices. In this paper, we consider the following four types of preconditioners P =P, (1 < k < 4): the
preconditioner P; is of the form P; =+ S;, where
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The preconditioner P, is of the form P, =1+ S,, where
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The preconditioner Ps is of the form P; =1+ S;, where
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The preconditioner Py is of the form P, =1+ S,, where
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The preconditioner P; was first introduced by Gunawardena et al. [4] when o; =1 (1 <i<n — 1), and it has been studied
by Kohno et al. [7] and Wu et al. [15] for 0 < o; <1 (1 <i < n— 1). The preconditioner P, was first introduced by Evans et al.
[3] when o, = 1, and it has been studied by Yun [17] and Li et al. [8] when 0 < «, < 1. The preconditioner P; was first intro-
duced by Milaszewicz [10] when o;=1 (2 < i< n), and it has been studied by Yun [16,19] for o; =1 (2 <i < n) and Huang
et al. [6] for O < «; < 1 (2 < i< n). The preconditioner P4, was recently introduced by Dehghan and Hajarian [2].

Let A; = P1A and S,L = E; + F;, where E; is a diagonal matrix and F; is a strictly lower triangular matrix. Then one obtains

Al=(+S)I-L-U)y=I1-L-U+S; —S;L—SU=D; —L; — Uy, (5)

where Di=1—-E{ Li=L+F;, and U;=U-S;+5U.
Let A, = P,A and S,U = E, + F,, where E, is a diagonal matrix and F, is a strictly lower triangular matrix. Using S,L = 0, one
obtains

A =(+S)I-L-Uy=1-L-U+S;—~SU=Dy — L, — Us, (6)

where D, =1 —E,, L,=L — S, +F,, and U, =U
Let A5 = P3A and S3U = E3 + F5 + G3, where Ej is a diagonal matrix, F3 is a strictly lower triangular matrix and Gs is a strictly
upper triangular matrix. Using SsL = 0, one obtains

/"3=(1+53)(17L*U)=I*L*U+S3*S3U=D3*L:;*U37 (7)

where D3=1—E3 L3=L—S3+F;, and Us=U+Gs.
Let A4 = P4A and S4L = E4 + F4 + G4, where E4 is a diagonal matrix, F4 is a strictly lower triangular matrix and G4 is a strictly
upper triangular matrix. Using S4U = 0, one obtains

Ap=(+S)(I—L—U)=I—-L—U+Ss—Ssl =Dy — Ly — Uy, (8)

where Dy=1—E4, Ly=L+F4 and Uy=U — S4 + G4.
If we apply the AOR iterative method to the preconditioned linear systems (4), then we get the preconditioned AOR iter-
ative method whose iteration matrix is
Tkrw = (D — rL) (1 — @)Dy + (0 — )L + wUy) i P = P(1 < k < 4). (9)

If @ =r, then the AOR method and the preconditioned AOR method reduce to the SOR method and the preconditioned SOR
method, respectively.
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