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a b s t r a c t

The modified Burgers’ equation (MBE) is solved numerically by the Petrov–Galerkin
method using a linear hat function as the trial function and a cubic B-spline function as
the test function. Product approximation has been used in this method. A linear stability
analysis of the scheme shows it to be unconditionally stable. The accuracy of the presented
method is demonstrated by two test problems. The numerical results are found in good
agreement with the exact solutions.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The Burgers’ equation

ut þ uux � muxx ¼ 0; ð1Þ

where m is a positive constant and the subscripts x and t denote space and time derivatives respectively was first introduced
by Batman [1] and later treated by Burgers’ [2] as a mathematical model for turbulence. Since then the equation has found
applications in fields as diverse as number theory, gas dynamics, heat conduction, elasticity, etc. The Burgers’ equation was
solved numerically by various methods such as the finite difference [3], Galerkin [4,5], least squares [6] and collocation
methods [7,8] etc. Indeed, the Burgers’ equation is a special case of the modified Burgers’ equation (MBE) of the form

ut þ ulux � muxx ¼ 0; ð2Þ

where l is a positive constant and m can be interpreted as viscosity. The MBE has the strong nonlinear aspects of the gov-
erning equation in many practical transport problems such as nonlinear waves in medium with low frequency pumping
or absorption, ion reflection at quasi perpendicular shocks, turbulence transport, wave processes in thermoelastic medium,
transport and dispersion of pollutants in river and sediment transport etc. The initial condition associated with Eq. (2) will be

uða; t0Þ ¼ f ðxÞ; a 6 x 6 b; ð3Þ

with the boundary conditions

uða; tÞ ¼ g1ðtÞ and uðb; tÞ ¼ g2ðtÞ; t > t0: ð4Þ

Various numerical methods have been proposed to solve MBE. Ramadan et al. [8] used septic B-spline collocation method for
the numerical solution of the MBE with l = 1 and l = 2. Ramadan and Danaf [9] also obtained the numerical solution of MBE
using quintic B-spline collocation method for the case l = 2 only. Griewank et al. [10] used non-polynomial spline-functions
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for the numerical treatment of the MBE for the cases l = 1 and l = 2. Sachdev et al. [11] obtained large-time asymptotics for
periodic solutions of the MBE for the cases l = 2 and l = 3. Lattice Boltzmann model for the MBE have been studied by Duan
et al. [12] for various initial conditions. In all the numerical techniques mentioned above, the small value of the viscosity m
considered was up to 0.001 only. In this work, the Petrov–Galerkin method is developed for the MBE using the linear hat
function as the trial function and the cubic B-spline function as the test function. Here the proposed method is shown to
represent accurately the various wave packets for the cases l = 2 and 3 and it can treat small value of m up to 0.0001. The
numerical results obtained by this proposed method are compared with the known solutions.

2. The Petrov–Galerkin method

For convenience, the MBE (2) is rewritten as

ut þ
1

lþ 1
ðulþ1Þx � muxx ¼ 0: ð5Þ

The space interval a 6 x 6 b is discretized with (N + 1) uniform grid points xj = a + jh, where j = 0,1,2, . . . ,N, and the grid spac-
ing is given by h = (b � a)/N. Let Uj(t) denote the approximation to the exact solution u(xj, t). Following the Petrov–Galerkin
method used in [13], we assume that the approximate solution of Eq. (3) as

uhðx; tÞ ¼
XN

j¼0

UjðtÞ/jðxÞ: ð6Þ

The product approximation technique [14] is used for treating the nonlinear term in the following manner:

ulþ1
h ðx; tÞ ¼

XN

j¼0

Ulþ1
j ðtÞ/jðxÞ; ð7Þ

where

/jðxÞ ¼
1þ ðx� jhÞ=h; x 2 ½xj�1; xj�
1� ðx� jhÞ=h; x 2 ½xj; xjþ1�
0; otherwise

8><
>:

The unknown functions Uj(t), j = 0,1,2, . . . ,N, are determined from the variational formulation

ððuhÞt ;wjÞ þ
1

lþ 1
ulþ1

h

� �
x
;wj

� �
� mððuhÞxx;wjÞ ¼ 0; ð8Þ

where wj, j = 0,1,2, . . . ,N, are test functions, which are taken to be the cubic B-splines given by

wjðxÞ ¼
1

h3

ðx� xj�2Þ3; x 2 ½xj�2; xj�1�
h3 þ 3h2ðx� xj�1Þ þ 3hðx� xj�1Þ2 � 3ðx� xj�1Þ3; x 2 ½xj�1; xj�
h3 þ 3h2ðxjþ1 � xÞ þ 3hðxjþ1 � xÞ3 � 3ðxjþ1 � xÞ3; x 2 ½xj; xjþ1�
ðxjþ2 � xÞ3; x 2 ½xjþ1; xjþ2�
0; otherwise

8>>>>>>><
>>>>>>>:

and (, ) denotes the usual inner product:

ðf ; gÞ ¼
Z b

a
f ðxÞgðxÞdx:

Integrating by parts and using the fact that w(a) = w(b) = w0(a) = w0(b) = 0, Eq. (8) leads to the formulation

ððuhÞt ;wjÞ þ
1

lþ 1
ulþ1

h

� �
x
;wj

� �
� mðuh; ðwjÞxxÞ ¼ 0: ð9Þ

Performing the integrations on (9) will give the following system of ordinary differential equations (ODEs):

1
20

A
�
þ 1

4ðmþ 1Þh B� m
h2 C ¼ 0; ð10Þ

where

A ¼ Uj�2 þ 26Uj�1 þ 66Uj þ 26Ujþ1 þ Ujþ2;

B ¼ �ðUj�2Þlþ1 � 10ðUj�1Þlþ1 þ 10ðUjþ1Þlþ1 þ ðUjþ2Þlþ1

C ¼ Uj�2 þ 2Uj�1 � 6Uj þ 2Ujþ1 þ Ujþ1

3674 T. Roshan, K.S. Bhamra / Applied Mathematics and Computation 218 (2011) 3673–3679



Download English Version:

https://daneshyari.com/en/article/4630370

Download Persian Version:

https://daneshyari.com/article/4630370

Daneshyari.com

https://daneshyari.com/en/article/4630370
https://daneshyari.com/article/4630370
https://daneshyari.com

