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a b s t r a c t

In this paper, two wavelet based adaptive solvers are developed for linear advection–
dispersion equation. The localization properties and multilevel structure of the wavelets
in the physical space are used for adaptive computational methods for solution of equation
which exhibit both smooth and shock-like behaviour. The first framework is based on
wavelet-Galerkin and the second is based on multiscale decomposition of finite element
method. Coiflet wavelet filter is incorporated in both the methods. The main advantage
of both the adaptive methods is the elimination of spurious oscillations at very high Peclet
number.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Many interesting physical systems are characterized by the presence of localized structure or sharp transition, which
might occur anywhere in the domain or change their locations in space with time. Popular methods such as finite element,
so-called meshless and recently developed wavelet methods, to solve these problems efficiently, use adaptive grid tech-
niques. Adaptive refinement techniques can also be profitably applied in solving partial differential equations useful in many
applications, including simulation, animation, computer vision, etc. The currently existing adaptive grid techniques may be
roughly classified as either subdivision schemes or basis refinement techniques. The major difference between these ap-
proaches is that subdivision schemes solve problems in the physical space by increasing the nodes while basis refinement
techniques (including hierarchical basis in finite element method) solve problems in coefficient space. Though both the
adaptive grid techniques are well understood, a lot of work has to be done for efficient implementation in complex domain,
in particular to reduce computational time.

Wavelet has high potential for fast, hierarchical and locally adaptive algorithms because of their compactly supported
refinable basis functions [1–4]. Liandrat and Tchamitchian [5] proposed the first algorithm based on a spatial approximation
exploiting the regularity properties of an orthonormal wavelet basis. Beylkin and Keiser [6] used wavelet expansion for adap-
tively updating numerical solution of nonlinear partial differential equations, which exhibit both smooth and shock-like
behaviour. Due to the signal processing base of traditional wavelet, the research in PDE simulations [7,8] was limited to sim-
ple domain and boundary conditions. This limitation has been eliminated with the development of the lifting scheme [9] and
stable completion [10,11]. By using lifting scheme, Vasilyev and Paolucci [12] developed wavelet collocation method to
adapt computational refinements to local demands of the solution. Krysl et al. [13] developed conforming hierarchical adap-
tive refinement methods where hierarchical refinement treats refinement as the addition of finer level ‘‘detail function’’ to an
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unchanged set of coarse-level functions. Amaratunga and Sudarshan [14] customized the second-generation wavelets to
generate hierarchical basis for finite element method to solve PDEs both hierarchically and adaptively.

Advection–dispersion equation exhibits discontinuity (shocks) after a finite time. Further, the numerical solution shows
spurious oscillations when dispersion coefficient is small as compared to the velocity of flow, i.e., at high Peclet number.
To capture the singular effects in the solution, the domain would require very fine resolution near singularities. The clas-
sical discretization based on uniform grid will be highly uneconomical. The existing numerical techniques use artificial
dispersion to overcome the stability problem. A comparison of various methods is discussed by Johnson [15], and
Zienkiewicz and Taylor [16]. Main interest of our work is to remove numerical instability by adaptive grid generation
(very fine grid at the critical zone) and show the effect of filtering by using wavelets without sacrificing the accuracy
of the results. In the paper, two wavelet based methods are presented and the results are compared with some recent
finite difference methods.

In the first method, linear advection–dispersion equation is solved by using wavelet-Galerkin method. For calculation of
inner product, Newton–cotes method is used which can be replaced by recently developed highly efficient methods [17,18].
The basic idea behind the adaptive solution is simply based on the analysis of wavelet coefficients, which gives information
about the region where sharp change starts or ends. At any time step only local matrix reflecting the local changes in the
solution, is solved. The method uses efficient data structure of uniform grid and periodic basis function to evaluate the en-
tries of the stiffness matrix.

In the second method, the finest scale finite element solution space is projected onto the scaling and wavelet spaces
resulting in the decomposition of high- and low-scale components. Repetition of such a projection results in multi-scale
decomposition of the fine scale solution. In the proposed wavelet projection method, the fine scale solution can be
obtained by any other numerical method also. Subsequently the properties of the wavelet functions are exploited to
eliminate the nodes from the smooth region where the wavelet coefficients will not exceed a preset tolerance. This wave-
let-based multi-scale transformation hierarchically filters out the less significant part of the solution, and thus provides an
effective framework for the selection of significant part of the solution. In this process, the ‘big’ coefficient matrix at the
finest level will be calculated once for complete domain whereas the ‘small’ adaptively compressed coefficient matrix for a
priory known localized dynamic zone of high gradient, which will be considerably less expensive to solve, will be used for
the solution in every step of the solution. Similar technique is used in the software QUADFLOW [19] using finite volume
method.

The paper presents simple, general methods with minimal mathematical framework. The present methods remove a
number of implementation headache associated with adaptive grid techniques and is a general technique, independent
of domain dimension. These methods have very important and highly practical consequence because they reduce the com-
putational time significantly. Description of the different element of the algorithm in combination with different mathe-
matical comments on the method, are provided. The resulting algorithms, while capturing full generality of methods, are
surprisingly simple. A set of concrete, compelling examples based on our implementation is also the contribution of the
paper.

The rest of the paper is organized as follows. Advection–dispersion equation is presented in Section 2. Multiscaling using
wavelet is briefly discussed in Section 3. In Section 4, Method-I, i.e. wavelet Galerkin method is discussed in detail. Multiscale
decomposition of finite element, i.e. Method-II is discussed in Section 5. Results obtained using these two methods and their
comparative study is presented in Section 6. Finally, Section 7 contains conclusion.

2. Advection–dispersion equation

Generally pollutant concentration in atmosphere is governed by advection–dispersion equation. The one dimensional
advection–dispersion equation can be written as:

@C
@t
¼ �u

@C
@x
þ D

@2C
@x2 � kC; ð1Þ

where C is concentration (mg/l), t duration (days), u the flow velocity (m/day), x is the distance along the direction of flow
from the upstream boundary of modeled domain (m), D the dispersive coefficient (m2/day), and k the decay constant (day�1).

We are considering following boundary and initial condition:

at t P 0; x ¼ 0; C ¼ C0ðtÞ; ð2aÞ

at t P 0; x ¼ L;
@C
@x
¼ 0; ð2bÞ

at t ¼ 0; 0 < x 6 L; C ¼ 0; ð2cÞ

where C0 is the concentration of constant magnitude.
Applying weighted residual method in the advection–dispersion Eq. (1), we getZ L
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dx ¼ 0: ð3Þ
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