Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

A modified halpern-type iteration algorithm for totally quasi- ϕ -asymptotically nonexpansive mappings with applications

S.S. Chang^{a,*}, H.W. Joseph Lee^b, Chi Kin Chan^b, W.B. Zhang^a

^a Department of Mathematics, College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China ^b Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong

ARTICLE INFO

Keywords: Total quasi- ϕ -symptotically nonexpansive mapping Halpern-type iteration algorithm Quasi- ϕ -symptotically nonexpansive mapping Quasi- ϕ -nonexpansive mapping Weak relatively nonexpansive mapping Relatively nonexpansive mapping Nonexpansive mapping Generalized projection

ABSTRACT

The purpose of this article is to modify the Halpern-type iteration algorithm for total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of Banach spaces. The results presented in the paper improve and extend the corresponding results of [X.L. Qin, Y.J. Cho, S.M. Kang, H. Y. Zhou, Convergence of a modified Halpern-type iterative algorithm for quasi- ϕ -nonexpansive mappings, Appl. Math. Lett. 22 (2009) 1051–1055], [Z.M. Wang, Y.F. Su, D.X. Wang, Y.C. Dong, A modified Halpern-type iteration algorithm for a family of hemi-relative nonexpansive mappings and systems of equilibrium problems in Banach spaces, J. Comput. Appl. Math. 235 (2011) 2364–2371], [Y.F. Su, H.K. Xu, X. Zhang, Strong convergence theorems for two countable families of weak relatively nonexpansive mappings and applications, Nonlinear Anal. 73 (2010) 3890–3906], [C. Martinez-Yanes, H.K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. 64 (2006) 2400–2411] and others.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper we assume that *E* is a real Banach space with the dual E^* , *C* is a nonempty closed convex subset of *E* and $J: E \to 2^{E^*}$ is the *normalized duality mapping* defined by

$$J(x) = \{f^* \in E^* : \langle x, f^* \rangle = \|x\|^2 = \|f^*\|^2\}, \quad x \in E.$$

In the sequel, we use F(T) to denote the set of fixed points of a mapping T, and use \mathscr{R} to denote the set of all real numbers. Recall that a mapping $T : C \to C$ is *nonexpansive*, if $||Tx - Ty|| \le ||x - y||, \forall x, y \in C$.

One classical way to study nonexpansive mappings is to use contraction to approximate a nonexpansive mapping. More precisely, take $t \in (0,1)$ and define a contraction $T_t : C \to C$ by

 $T_t x = tu + (1-t)Tx, \quad \forall x \in C,$

where $u \in C$ is a fixed point. Banach's contraction mapping principle guarantees that T_t has a unique fixed point x_t in C. It is unclear what is the behavior of x_t as $t \to 0$, even if T has a fixed point. However, for the case of T having a fixed point, Browder [1] proved that if H is a Hilbert space, then x_t converges strongly to a fixed point of T which is the nearest to u.

Motivated by Browder's results, Halpern [2] considered the following explicit iteration:

* Corresponding author. *E-mail address:* changss@yahoo.cn (S.S. Chang).

^{0096-3003/\$ -} see front matter \odot 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2011.12.019

(1.1)

$$x_0 \in C$$
, $x_{n+1} = \alpha_n u + (1 - \alpha_n) T x_n$, $\forall n \ge 0$,

where *T* is nonexpansive. He proved the strong convergence of $\{x_n\}$ to a fixed point of *T* provided that $\alpha_n = n^{-\theta}$, where $\theta \in$ (0, 1).

Recently, many authors improved the result of Halpern [2] and studied the restrictions imposed on the control sequence $\{\alpha_n\}$ in iteration algorithm (1.1). In 2006, Martinez-Yanes and Xu [3] proposed the following modification of the Halpern iteration for a single nonexpansive mapping T in a Hilbert space and proved the following theorem:

Theorem (MYX [3]). Let H be a real Hilbert space, C be a closed and convex subset of H and T : $C \rightarrow C$ be a nonexpansive mapping such that $F(T) \neq \emptyset$. If $\{\alpha_n\} \subset (0, 1)$ such that $\lim_{n \to \infty} \alpha_n = 0$, then the sequence $\{x_n\}$ defined by

$$\begin{cases} x_{0} \in C \text{ chosen arbitrarily,} \\ y_{n} = \alpha_{n} x_{0} + (1 - \alpha_{n}) T x_{n}, \\ C_{n} = \{ z \in C : \|y_{n} - z\|^{2} \leq \|x_{n} - z\|^{2} + \alpha_{n} (\|x_{0}\|^{2} + 2\langle x_{n} - x_{0}, z \rangle) \}, \\ Q_{n} = \{ z \in C : \langle x_{0} - x_{n}, x_{n} - z \rangle \geq 0 \}, \\ x_{n+1} = P_{C_{n} \cap Q_{n}} x_{0}, n \geq 1. \end{cases}$$
(1.2)

converges strongly to $P_{F(T)}x_0$.

- -

Very recently Qin et al. [4,5] and Wang et al. [6] improved the result Martinez-Yanes and Xu [3] from Hilbert spaces to Banach spaces for relatively nonexpansive mappings [7,8], quasi- ϕ -nonexpansive mappings and a family of quasi- ϕ -nonexpansive mappings and under suitable conditions some strong convergence theorems are proved.

The purpose of this paper is to consider a hybrid projection algorithm for modifying the iterative process (1.1) to have strong convergence for totally quasi- ϕ -asymptotically nonexpansive mappings which contains relatively nonexpansive mappings, guasi- ϕ -nonexpansive mappings (or hemi-relatively nonexpansive mappings), guasi- ϕ -asymptotically nonexpansive mappings [9] as its special cases. The results presented in the paper extend and improve the corresponding results of Oin et al. [4,5], Wang et al. [6], Martinez-Yanes and Xu [3] and others.

2. Preliminaries

In the sequel, we always use $\phi : E \times E \to \mathscr{R}^+$ to denote the Lyapunov functional defined by

$$\phi(\mathbf{x}, \mathbf{y}) = \|\mathbf{x}\|^2 - 2\langle \mathbf{x}, \mathbf{j}\mathbf{y} \rangle + \|\mathbf{y}\|^2, \quad \forall \mathbf{x}, \quad \mathbf{y} \in E.$$

$$(2.1)$$

It is obvious from the definition of ϕ that

$$(\|\mathbf{x}\| - \|\mathbf{y}\|)^2 \le \phi(\mathbf{x}, \mathbf{y}) \le (\|\mathbf{x}\| + \|\mathbf{y}\|)^2, \quad \forall \mathbf{x}, \quad \mathbf{y} \in E.$$
(2.2)

Following Alber [10], the generalized projection $\Pi_C: E \to C$ is defined by

$$\Pi_{\mathsf{C}}(\mathbf{x}) = \arg \inf_{\mathbf{y} \in \mathsf{C}} \phi(\mathbf{y}, \mathbf{x}), \quad \forall \mathbf{x} \in E.$$

Lemma 2.1 [10]. Let E be a smooth, strictly convex and reflexive Banach space and C be a nonempty closed convex subset of E. Then the following conclusions hold:

(a) $\phi(x, \Pi_C y) + \phi(\Pi_C y, y) \leq \phi(x, y)$ for all $x \in C$ and $y \in E$;

- (b) If $x \in E$ and $z \in C$, then $z = \prod_C x \iff \langle z y, Jx Jz \rangle \ge 0$, $\forall y \in C$;
- (c) For $x, y \in E$, $\phi(x, y) = 0$ if and only if x = y;

Remark 2.2. If *H* is a real Hilbert space, then $\phi(x, y) = ||x - y||^2$ and $\Pi_C = P_C$ (the metric projection of *H* onto *C*).

Recall that a point $p \in C$ is said to be an *asymptotic fixed point* of $T : C \to C$ if, there exists a sequence $\{x_n\} \subset C$ such that $x_n \rightarrow p$ and $||x_n - Tx_n|| \rightarrow 0$. Denote the set of all asymptotic fixed points of T by $\hat{F}(T)$. A point $p \in C$ is said to be a strong *asymptotic fixed point* of *T*, if there exists a sequence $\{x_n\} \subset C$ such that $x_n \to p$ and $||x_n - Tx_n|| \to 0$. Denoted the set of all strong asymptotic fixed points of *T* by F(T).

Definition 2.3

(1) A mapping $T: C \to C$ is said to be relatively nonexpansive [8,11], if $F(T) \neq \emptyset$, $F(T) = \widehat{F}(T)$ and $\phi(p, Tx) \leq \phi(p, x)$, $\forall x \in C$, $p \in F(T)$.

Download English Version:

https://daneshyari.com/en/article/4630505

Download Persian Version:

https://daneshyari.com/article/4630505

Daneshyari.com