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a b s t r a c t

Model generalized eigenproblems associated with self-adjoint differential operators in
nonstandard homogeneous or heterogeneous domains are considered. Their numerical
approximation is based on Gauss–Lobatto–Legendre conforming spectral elements defined
by Gordon–Hall transfinite mappings. The resulting discrete eigenproblems are solved iter-
atively with a Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method,
accelerated by an overlapping Schwarz preconditioner. Several numerical tests show the
good convergence properties of the proposed preconditioned eigensolver, such as its scala-
bility and quasi-optimality in the discretization parameters, which are analogous to those
obtained for overlapping Schwarz preconditioners for linear systems.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Many interesting scientific applications require the accurate evaluation of the smallest eigenpairs of large sparse matrices.
In recent years, several iterative methods have been proposed for this task, trying to extend to eigenproblems the promising
results obtained by the research community on preconditioned iterative methods for linear systems, see e.g. [22, Ch. 16] and
the references therein.

In this paper, we consider a model generalized eigenproblem Au ¼ kBu associated with a self-adjoint differential operator,
in nonstandard homogeneous or heterogeneous domains. The problem is discretized by the standard conforming Spectral
Element Method (SEM) based on quadrilateral elements and Gauss–Lobatto–Legendre (GLL) quadrature points, so the meth-
od can be viewed as a nodal version of hp Finite Element Methods (FEM); see, e.g., [5,2,8,17,29]. One difficulty in the imple-
mentation of the SEM is the approximation of problems in complex-shaped domains, arising in several branches of applied
sciences. We shall address this point by using transfinite interpolation, or Gordon–Hall maps [15], in order to build very flex-
ible maps from the reference square domain to a generic spectral element with quadrilateral shape and, in the general case,
with curvilinear edges. In our previous work [16] on preconditioned iterative solvers for SEM–GLL linear systems, we showed
that the good convergence properties (with respect to the discretization parameters h and p) of Schwarz preconditioners for
standard rectangular elements are retained for SEM–GLL elements with Gordon–Hall maps. This previous study is here
extended to eigenproblems arising from SEM–GLL discretizations.

In the FEM framework, several large mesh eigenproblems arising from mathematical physics have been addressed by
means of preconditioned eigensolvers; see, e.g. [1,3,4,12,9,21,7,20,22]. Here, we consider the Locally Optimal Block Precon-
ditioned Conjugate Gradient (LOBPCG) method [20,19] that has been proposed for the numerical solution of large-scale, gen-
eralized symmetric positive definite eigenvalue problems. The SEM discrete systems arising at each LOBPCG iteration are
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preconditioned by the overlapping Schwarz (OS) method. The latter is based on partitioning the domain of the given problem
into overlapping subdomains, solving parallel independent local problems on the subdomains, and solving a coarse problem
on a coarse mesh, in order to ensure scalability; see, e.g., [11,32] for a general introduction to OS methods, and
[6,13,14,16,25] for OS applications to SEM discretizations.

The outline of this paper is as follows. We introduce the model eigenvalue problem and its SEM approximation in Section
2. In order to deal with nonstandard geometries, Gordon–Hall transfinite interpolation is introduced in Section 3. In Section
4, we recall a family of preconditioned, iterative eigensolvers including the LOBPCG method. In Section 5, the classical do-
main decomposition overlapping Schwarz preconditioner is applied to the LOBPCG eigensolver. The paper is concluded, in
Section 6, by several numerical test problems showing the convergence properties of the LOBPCG-OS preconditioner with
respect to the discretization parameters H;h; p.

2. Eigenvalue problem and spectral elements

Let X 2 Rd; d ¼ 2;3, be a bounded Lipschitz domain with piecewise smooth boundary @X. For simplicity, we consider a
model eigenvalue problem associated with an elliptic problem in the plane (d ¼ 2): Find eigenvalues k 2 C and suitably reg-
ular eigenfunctions u such that

�divðagraduÞ ¼ kbu in X ð1Þ

with Dirichlet boundary conditions u ¼ 0 on C ¼ @X. The coefficients a > 0 and b > 0 are piecewise constant functions in X.
Let V be the space V :¼ fv 2 H1ðXÞ : v ¼ 0 on Cg, where H1ðXÞ is the usual Sobolev space of functions in L2ðXÞ whose gra-
dient is in ½L2ðXÞ�2. In case of boundary conditions of Neumann or mixed type, the space V must be modified accordingly.
The weak formulation of (1) reads (see e.g. [28]): Find eigenvalues k 2 C and eigenfunctions u 2 V such that

aðu;vÞ ¼ kbðu; vÞ; 8v 2 V ð2Þ

with aðu;vÞ :¼
R

X a gradu � gradvð Þdx; bðu;vÞ :¼
R

X buv dx. Owing to the symmetry of the differential operator and the pos-
itivity of b, the eigenvalues are actually real, and the eigenfunctions can always be chosen to be real valued.

The variational problem (2) is discretized by the standard conforming Spectral Element Method (SEM) based on quadri-
lateral elements and Gauss–Lobatto–Legendre (GLL) quadrature points; see [2,8,17] for a general introduction and an anal-
ysis of the method. The method can also be viewed as a nodal version of hp-FEM that uses GLL points and employs a discrete
space consisting of continuous piecewise polynomials of degree p in each variable within each quadrilateral. Let Q ref be the
reference square ð�1;1Þ2 and let QpðQ ref Þ be the set of polynomials on Q ref of degree6 p in each variable. We assume that the
original domain X is decomposed into K quadrilateral elements Qk as X ¼

SK
k¼1Q k. This is a conforming finite element par-

tition, since the intersection between two distinct elements Qk is either the empty set or a common vertex or a common side.
We denote by h the maximum diameter of the elements and by sh the associated finite element mesh. Each element Qk is the
image of the reference square Q ref by means of a suitable mapping uk; k ¼ 1; . . . ;K , i.e., Q k ¼ ukðQ refÞ, to be defined in Sec-
tion 3. Finally, the space V is discretized by the space VK;p of continuous functions whose restrictions to each Q k are the
images of polynomials of QpðQ ref Þ.

The spectral element approximation of the variational eigenvalue problem (2) is obtained by replacing the L2-inner prod-
uct and the bilinear form with their approximations based on GLL quadrature formulae described below.

We denote by fnjgp
j¼0 the set of GLL points of ½�1;1�, that are the ðpþ 1Þ zeros of the polynomial ð1� n2Þ @LpðnÞ

@n , where Lp is
the pth Legendre polynomial in ½�1;1�. It is well-known that these nodes cluster towards the endpoints of the interval, where
the distance between GLL nodes is on the order of 1=p2, while in the middle of the interval ½�1;1� the distance is on the order
of 1=p (see [2]). Then we denote by rj ¼ 2

pðpþ1Þ
1

ðLpðnjÞÞ2
the quadrature weight associated with nj. Let lj;pðnÞ be the Lagrange inter-

polating polynomial of degree 6 p which vanishes at all the GLL nodes except nj, where it equals one. The Lagrangian nodal
basis functions on the reference square Q ref are defined by building tensor products lj;pðnÞl‘;pðgÞ; 0 6 j; ‘ 6 p, providing a ten-
sor-product basis for VK;p. Each function u 2 QpðQ refÞ can be expanded in this nodal basis through its values at GLL nodes

uðnj; n‘Þ; 0 6 j; ‘ 6 p, as uðn;gÞ ¼
Pp

j¼0

Pp
‘¼0uðnj; n‘Þlj;pðnÞl‘;pðgÞ. Then, on Q ref , the discrete L2-inner product is

ðu;vÞQ ref ;p
¼
Xp

j¼0

Xp

‘¼0

uðnj; n‘Þvðnj; n‘Þrjr‘

and in general on X,

ðu;vÞK;p ¼
XK

k¼1

Xp

j;‘¼0

ðu �ukÞðnj; n‘Þðv �ukÞðnj; n‘Þ j Jk j rjr‘; ð3Þ

where j Jk j is the Jacobian of the mapping uk at ðnj; n‘Þ. The precise building of this mapping arising in the case of complex
geometries has been developed in [16] and is recalled in Section 3.

We obtain the discrete variational eigenvalue problem: Find u 2 VK;p such that

aK;pðu;vÞ ¼ kbK;pðu; vÞ; 8v 2 VK;p; ð4Þ
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