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Keywords: In this work, by the use of Guseinov’s one-center expansion formulas and Lowdin- radial
Slatt?l' type Ol‘l?ité{ls function, the series expansion relations in molecular coordinate system are established for
Noninteger principal quantum numbers the two-center nuclear attraction integrals of noninteger n* Slater type orbitals in terms of
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basic two-center nuclear attraction integrals over integer n Slater functions. The Lowdin
o-radial function convoluted with the Guseinov’s one-center expansion formulas is one
of the most important ingredients for accurate and efficient implementation of electronic
structure calculation methods regardless of Hartree-Fock-Roothaan (HFR) method. The
proposed algorithm shows better performance in arbitrary quantum numbers, screening
constants and location of orbitals leading to significantly reduced run times.
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1. Introduction

The accurate calculation of multicenter molecular integrals over Slater type orbitals with noninteger principal
quantum numbers (NISTOs) plays an important role in the development of ab initio and semi-empirical methods for
the studying properties of the atoms and molecules [1,2]. It is well known that the STOs give more accurate results
because they fulfill a cusp condition and have correct asymptotic behavior. Many authors have worked on evaluating
multicenter molecular integrals over STOs with integer principal quantum numbers (ISTOs) including the Fourier trans-
form [3-5], the B-function [6,7] and Guseinov’s symmetrical and unsymmetrical one-range addition methods [8,9], etc.
Unfortunately, the literature on the evaluation of multicenter molecular integrals over NISTOs in HFR theory is not very
abundant [10,11]. Recently, efficient approximation formulae for multicenter molecular integrals over NISTOs have been
proposed [12]. By the use of complete orthonormal sets of ¥*-exponential type orbitals (¥*-ETOs, o =2,1,0,—1,-2,...)
the NISTOs can be expressed in terms of ISTOs [13,14]. With this spirit in mind, we calculate the two-center nuclear
attraction integrals over NISTOs using the convolution between a Guseinov’s one-center expansion formula and a Low-
din-o radial function which makes the offered algorithm faster and more accurate than the other known algorithms.
In addition, some numerical tests have been performed for the computation of the two-center nuclear attraction integrals
over NISTOs.
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2. Theory

The two-center nuclear attraction integrals over NISTOs are defined as:
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Here, the S;, (6, ) are the complex (S;, = Yin) or real spherical harmonics. We notice that the definition of phases in this
work for the complex spherical harmonics (Y}, = Y;_,) differs from the Condon-Shortley phases [15] by the sign factor
(=™

For the calculation of integrals (1), we use the following one-center expansion formula suggested by Guseinov [16,17]:
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where o =2,1,0,—1,—-2,... The normalized ISTOs ¥,,,(¢,7) and expansion coefficients V*" occurring in Eq. (3) are determined
by:
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Taking into account Eq. (3) in (1) we obtain the following relation in terms of two-center nuclear attraction integrals with
ISTOs:

N N

7R i N N' 5
nslmn=l'm' \&s I-, = z'l.n”l z*’l"n”’l’ n’lmn"l'm yv Ia ’
J ((,O3R) = lim VitV J (&R 8)

’
N.N'=o0 n"=l+1 pr=l' {1

where J, v (G (' R) are the two-center nuclear attraction integrals over ISTOs determined by:
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For the evaluation of this integral we use the Guseinov’s one-center charge density expansion formula [17-19]. Then, we
obtain:
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Here, J,;,(¢, R) are the basic two-center nuclear attraction integrals defined by:
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See Refs. [12,17] for the exact definition of the quantity Wy, yrm o ((, {5 2).
For the calculation of basic two-center nuclear attraction integral we use the Léwdin’s radial function method set out in
Refs. [20-22]. Then, we obtain:
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For the rapid and accurate calculation of the C”””(l Jj) coefficients recently we have proposed a new algorithm using bino-
mial coefficients [23].



Download English Version:

https://daneshyari.com/en/article/4630543

Download Persian Version:

https://daneshyari.com/article/4630543

Daneshyari.com


https://daneshyari.com/en/article/4630543
https://daneshyari.com/article/4630543
https://daneshyari.com

