
Performance Evaluation 73 (2014) 110–132

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Operational versus weakest pre-expectation semantics for
the probabilistic guarded command language
Friedrich Gretz a,b,∗, Joost-Pieter Katoen a, Annabelle McIver b
a RWTH Aachen University, Aachen, Germany
b Macquarie University, Sydney, Australia

a r t i c l e i n f o

Article history:
Available online 17 December 2013

Keywords:
Expectation transformer semantics
Operational semantics
Markov decision process
Expected rewards

a b s t r a c t

This paper proposes a simple operational semantics of pGCL, Dijkstra’s guarded command
language extended with probabilistic choice, and relates this to pGCL’s wp-semantics by
McIver and Morgan. Parametric Markov decision processes whose state rewards depend
on the post-expectation at hand are used as the operational model. We show that the
weakest pre-expectation of a pGCL-program w.r.t. a post-expectation corresponds to the
expected cumulative reward to reach a terminal state in the parametric MDP associated
to the program. In a similar way, we show a correspondence between weakest liberal
pre-expectations and liberal expected cumulative rewards. The verification of probabilistic
programs using wp-semantics and operational semantics is illustrated using a simple
running example.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Formal semantics of programming languages has been the subject of intense research in computer science for several
decades. Various approaches have been developed for the description of program semantics. Structured operational
semantics defines the meaning of a program by means of an abstract machine where states correspond to program
configurations (typically consisting of a program counter and a variable valuation) and transitions model the evolution of a
program by executing statements. Program executions are then the possible runs of the abstract machine. Denotational
semantics maps a program onto a mathematical object that describes for instance its input–output behaviour. Finally,
axiomatic semantics provides the program semantics in an indirect manner by describing its properties. A prominent
example of the latter are Hoare triples in which annotations, written in predicate logic, are associated to control points
of the program.

The semantics of Dijkstra’s seminal guarded command language [1] from the seventies is given in terms of weakest
preconditions. It is in fact a predicate transformer semantics, i.e. a total function between two predicates on the state of a
program. The predicate transformer E = wp(P, F) for program P and postcondition F yields the weakest precondition E on
the initial state of P ensuring that the execution of P terminates in a final state satisfying F . There is a direct relation with
axiomatic semantics: the Hoare triple ⟨E⟩ P ⟨F⟩ holds for total correctness if and only if E ⇒ wp(P, F). The weakest liberal
precondition wlp(P, F) yields the weakest precondition for which P either does not terminate or establishes F . It does not
ensure termination and corresponds to Hoare logic in partial correctness. Although providing an operational semantics for
the guarded command language is rather straightforward, it was not until the early nineties that Lukkien [2,3] provided a
formal connection between the predicate transformer semantics and the notion of a computation.

∗ Corresponding author at: Macquarie University, Sydney, Australia.
E-mail addresses: friedrich.gretz@students.mq.edu.au, fgretz@cs.rwth-aachen.de (F. Gretz), katoen@cs.rwth-aachen.de (J.-P. Katoen),

annabelle.mciver@mq.edu.au (A. McIver).

0166-5316/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.peva.2013.11.004

http://dx.doi.org/10.1016/j.peva.2013.11.004
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2013.11.004&domain=pdf
mailto:friedrich.gretz@students.mq.edu.au
mailto:fgretz@cs.rwth-aachen.de
mailto:katoen@cs.rwth-aachen.de
mailto:annabelle.mciver@mq.edu.au
http://dx.doi.org/10.1016/j.peva.2013.11.004


F. Gretz et al. / Performance Evaluation 73 (2014) 110–132 111

Qualitative annotations in predicate calculus are often insufficient for probabilistic programs as they cannot express
quantities such as expectations over program variables. To that end, McIver and Morgan [4] generalised the methods of
Dijkstra andHoare to probabilistic programsbymaking the annotations real-valued expressions – referred to as expectations
– in the program variables. Expectations are the quantitative analogue of predicates. This yields an expectation transformer
semantics of the probabilistic guarded command language (pGCL, for short), an extension of Dijkstra’s language with a
probabilistic choice operator. An expectation transformer is a total function between two expectations on the state of a
program. The expectation transformer e = wp(P, f ) for pGCL-program P and post-expectation f over final states yields
the least expected value e on P ’s initial state ensuring that P ’s execution terminates with a value f . The annotation ⟨e⟩ P ⟨f ⟩
holds for total correctness if and only if e ≤ wp(P, f ), where ≤ is to be interpreted in a point-wise manner. The weakest
liberal pre-expectation wlp(P, f ) yields the least expectation for which P either does not terminate or establishes f . It does
not ensure termination and corresponds to partial correctness.

This paper provides a simple operational semantics of pGCL using parametric Markov decision processes (pMDPs), a
slight variant of MDPs in which probabilities may be parameterised [5,6]. Our main contribution in this paper is a formal
connection between thewp- andwlp-semantics of pGCL byMcIver andMorgan and the operational semantics of pGCL. This
provides a clean and insightful relationship between the abstract expectation transformer semantics that has been proven
useful for formal reasoning about probabilistic programs, and the notion of a computation in terms of the operationalmodel,
a pMDP. In order to establish this connection we equip pMDPs with state rewards that depend on the post-expectation at
hand. Intuitively speaking, we decorate a terminal state in the operational model of a program with a reward that cor-
responds to the value of the post-expectation. All other states are assigned reward zero. We then show that the weakest
pre-expectation of a pGCL-program P w.r.t. a post-expectation corresponds to the expected cumulative reward to reach a
terminal state in the pMDP associated to P . In a similar way, we show that weakest liberal pre-expectations correspond to
liberal expected cumulative rewards. The proofs are by induction on the structure of our probabilistic programs using stan-
dard results from fixed point theory. This paper thus yields a correspondence theorem that enables us to understand the
mathematically involved expectation transformers intuitively using only first principles of Markov decision processes with
rewards. In addition, for finite-state programs (or program fragments), our result implies that algorithms for computing
expected accumulated rewards in MDPs – for which efficient algorithms and tools based on linear programming exist – can
be employed for computing weakest pre-expectations. Finally we recall the notion of probabilistic invariants [4] and apply
our correspondence theorem to find an operational characterisation of invariants (which originally are defined in terms of
expectation transformers).

1.1. Related work

TheMDP semantics of pGCL in this paper bears strong resemblance to the operational semantics of similar languages. To
mention a few, Baier et al. [7] provide anMDP semantics of a probabilistic version of Promela, the modelling language of the
SPINmodel checker. Di Pierro et al. [8] give a semantics to a very similar programming language without non-determinism.
The seminal work by Kozen [9] provides two semantics of a deterministic variant of pGCL and shows their correspondence.
Kozen interprets probabilistic programs as partial measurable functions on a measurable space, and as continuous linear
operators on a Banach space of measures. He et al. [10] provide a mapping from a semantics based on a probabilistic
complete partial order which contains non-determinism à la Jones [11] to a semantics which is amapping from initial states
to sets of probability distributions over final states. To our knowledge, our results on relating weakest pre-expectations of
pGCL and an operational semantics are novel. Our set-up and results can be considered as a probabilistic analogue of the
work by Lukkien [2,3] who provided a formal connection between the predicate transformer semantics of Dijkstra’s guarded
command language and the operational notion of a computation.

More examples of how todiscover and apply invariantswhen reasoning about probabilistic programs canbe found at [12].
There we also describe Prinsys, a tool for semi-automatic invariant generation.

1.2. Structure of this paper

The rest of the paper is divided as follows. In Section 2 we introduce the probabilistic programming language pGCL.
ParametricMarkov decision processeswith rewards are introduced in Section 3. Section 4 recaps the denotational semantics
of pGCL [4] and introduces operational semantics for this language. Then themain result is established, namely that the two
semantics are equivalent. Section 5 provides an example of reasoning over pGCL programs. Finally, Section 6 introduces
invariants and uses our main result to give an operational characterisation for them.

This paper is an extended version of the conference paper [13]. This version contains a generalised version of the proofs of
Theorems 23 and 24, a new section on invariants and an Appendix with a new proof for continuity ofwp(P, ·) andwlp(P, ·).

2. Probabilistic programs

Our programming language pGCL [4] is an extension of Dijkstra’s guarded command language [1]. Besides a non-
deterministic choice operator, denoted [], and a conditional choice, it incorporates a probabilistic choice operator, denoted



Download	English	Version:

https://daneshyari.com/en/article/463055

Download	Persian	Version:

https://daneshyari.com/article/463055

Daneshyari.com

https://daneshyari.com/en/article/463055
https://daneshyari.com/article/463055
https://daneshyari.com/

