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a b s t r a c t

This paper concerns the memoryless quasi-Newton method, that is precisely the
quasi-Newton method for which the approximation to the inverse of Hessian, at each step,
is updated from the identity matrix. Hence its search direction can be computed without
the storage of matrices. In this paper, a scaled memoryless symmetric rank one (SR1)
method for solving large-scale unconstrained optimization problems is developed. The
basic idea is to incorporate the SR1 update within the framework of the memoryless
quasi-Newton method. However, it is well-known that the SR1 update may not preserve
positive definiteness even when updated from a positive definite matrix. Therefore we
propose the memoryless SR1 method, which is updated from a positive scaled of the
identity, where the scaling factor is derived in such a way that positive definiteness of
the updating matrices are preserved and at the same time improves the condition of the
scaled memoryless SR1 update. Under very mild conditions it is shown that, for strictly
convex objective functions, the method is globally convergent with a linear rate of conver-
gence. Numerical results show that the optimally scaled memoryless SR1 method is very
encouraging.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Large-scale unconstrained optimization is concerned with the numerical solution of the following problem:

min f ðxÞ; x 2 Rn; ð1Þ

where f : Rn ! R is continuously differentiable function, and n, the dimension of the problem is assumed to be large. Usually,
problem (1) is solved iteratively through a line search scheme:

xkþ1 ¼ xk þ kkdk; ð2Þ

where dk is the search direction and kk > 0 is the step length. The step length can be computed by an exact line search:

k�k ¼ argmink2Rff ðxk þ kdkÞg; ð3Þ

or by some line search conditions, such as Wolfe [16] conditions:
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f ðxk þ kkdkÞ 6 f ðxkÞ þ b1kkgT
k dk; ð4Þ

gT
kþ1dk P b2gT

k dk; ð5Þ

where 0 < b1 < 1/2, b1 < b2 < 1 and gk =5f(xk) denotes the gradient vector of f(x) at the current iteration point xk.
In this paper, we are particularly interested in deploying methods for solving very large-scale cases, where the dimen-

sions of the problems are up to 106. The need to solve these extremely large-scale optimization problems forces one to con-
sider methods of O(n) storage as the only methods of choice. This class of methods, includes those as the steepest descent
method, conjugate gradient methods, limited memory quasi-Newton method and memoryless quasi-Newton method.

Memoryless quasi-Newton methods or one step quasi-Newton methods were first considered by Perry [13] and Shanno
[14]. They are actually the quasi-Newton method for which at each iteration, a periodically restarted quasi-Newton correc-
tion is calculated from the initial approximation, commonly given by the identity matrix. Hence the memoryless quasi-New-
ton directions can be computed without the storage of matrices, namely O(n2) storages. Among the well-studied memoryless
quasi-Newton methods is the memoryless BFGS method, which uses the BFGS update:

Hkþ1 ¼ I � yT
k sk

sT
k yk

� �
Hk I � yT

k sk

sT
k yk

� �
þ sksT

k

sT
k yk

; ð6Þ

where sk = xk+1 � xk and yk = gk+1 � gk. In fact, a result by Shanno [14] (see also [8]) shows that traditional CG methods such as
the Fletcher–Reeves and Polak-Ribiére algorithm can be interpreted as a memoryless BFGS algorithm. This memoryless BFGS
algorithm may then be scaled optimally by the scaling of Oren and Spedicato [12]. Besides the BFGS update, one can extend
the idea of memoryless updating to SR1 update:

Hkþ1 ¼ Hk þ
sk � Hkykð Þ sk � Hkykð ÞT

yT
k sk � Hkykð Þ ð7Þ

and get the memoryless SR1 method. Minimization algorithms using SR1 update in both a line search and trust region con-
text have been shown in computational experiments by Conn et al. [2] and Khalfan et al. [6] to be competitive with methods
using the widely accepted BFGS update. Hence, it is reasonable to think that such encouraging results can be extended to the
memoryless version of SR1 method as well. However, it is well-known that the SR1 update may not preserve positive def-
initeness even when updated from a positive definite matrix. Therefore, to overcome this drawback, we propose a scaled
memoryless SR1 method, which uses a periodically restarted SR1 correction from a positive scaled identity matrix. The scal-
ing factor is derived in such a way the positive definiteness of the updated SR1 matrix can be preserved naturally and the
condition of the SR1 update is also improved.

This paper is organized as follows: in Section 2, we discuss the optimal scaling factor for the identity matrix. Section 3
gives the convergence result of the scaled memoryless SR1 method for a convex minimization. Finally we include some
numerical experiments on a standard set of test problems in Section 4.

2. Scaling the identity matrix

Throughout this section, we will use the following notations:

gk ¼ yT
k Hkyk; tk ¼ yT

k sk; and xk ¼ sT
k Bksk; ð8Þ

where Bk is the current Hessian approximation using the direct SR1 update:

Bkþ1 ¼ Bk þ
yk � Bkskð Þ yk � Bkskð ÞT

sT
k yk � Bkskð Þ ð9Þ

and Hk ¼ B�1
k . When we mention inverse SR1 update, we mean the updating formula (7), otherwise the direct SR1 update is

given by (9). We assume that the curvature condition tk ¼ yT
k sk > 0 and Bk (or Hk) is positive definite.

Our primary motivation here is to find the best SR1 formula updated from current approximation, i.e. this update should
satisfy the secant equation while preserving positive definiteness and as much information from the current update as pos-
sible. Because it is difficult to find the optimal scaling factor for SR1 update in l2-norm condition number, one may consider
obtaining it in some other measures. With this aim in mind, we first consider the following measure, which is suggested by
Dennis and Wolkowicz [3]:

rðAÞ ¼ nmax

detðAÞ1=n ; ð10Þ

where A is an n � n positive definite matrix and nmax is the largest eigenvalue of A Here, the measure r acts as a condition
number in that it provides a deviation from a multiple identity as does the l2-conditioned number. In fact, both Dennis
and Wolkowicz [3] and Wolkowicz [17] had shown that any r-optimal update will also be j-optimal (j(A) denotes the
l2-condition number of A) and have a common spectral property. The j-measure is used by Shanno and Phua [15] to derive
the optimal scaling factor for the BFGS update.

We now give the following theorem which is due to Wolkowicz [17]:
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