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a b s t r a c t

In this paper, we apply the method of iterative operator splitting on the Korteweg–de Vries
(KdV) equation. The method is based on first, splitting the complex problem into simpler
sub-problems. Then each sub-equation is combined with iterative schemes and solved
with suitable integrators. Von Neumann analysis is performed to achieve stability criteria
for the proposed method applied to the KdV equation. The numerical results obtained by
iterative splitting method for various initial conditions are compared with the exact
solutions. It is seen that they are in a good agreement with each other.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Nonlinear wave equations are widely used to describe complex phenomena in various sciences such as fundamental par-
ticle physics, plasma and fluid dynamics, statistical mechanics, protein dynamics, condensed matter, biophysics, nonlinear
optics, quantum field theory, see [14,3,1,6]. The wide applicability of these equations is the main reason why they have at-
tracted so much attention from many mathematicians. However, they are usually very difficult to solve, either numerically
or analytically.

During the past four decades, both mathematicians and physicists have devoted considerable effort to the study of exact
and numerical solutions of the nonlinear partial differential equations corresponding to the nonlinear problems. Many pow-
erful methods have been presented, for instance, Darboux transformation method [9], Adomians decomposition method
[15,11], He’s perturbation method [16], Operator splitting method [10], Iterative splitting method [7].

In this paper, we consider the nonlinear Korteweg–de Vries (KdV) equation

ut þ 6uux þ uxxx ¼ 0; ð1Þ

which was found to admit soliton solutions and be able to model the propagation of solitary wave on water surface. Its phe-
nomena was first discovered by Russell in 1834 [13] and Korteweg–de Vries formulated the mathematical model equation to
provide explanation of the phenomena. In [11,16,2], KdV equation has been solved with Adomain’s decomposition (ADM),
He’s perturbation method (HPM) and a particle method (based on diffusion-velocity method) analytically and numerically.
Here, we use iterative operator splitting method to study on the nonlinear KdV equation.

The iterative splitting is a recent popular technique which is based on first splitting the complex problem into simpler
differential equations. Then each sub-equation is combined with the iterative schemes, each of which is efficiently solved
with suitable integrators [5,4,8,7].

Furthermore, this study explicitly derives the stability criteria for iterative splitting method using Fourier analysis, which
based on KdV equation [12].
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The structure of the paper is as follows: In Section 2, outline of the iterative splitting method is given. Stability analysis of
the method which based on KdV equation is derived in Section 3. In Section 4, applications of the method on KdV equation is
done. Finally, we have numerical results and conclusion part.

2. Outline of the method

Consider the abstract Cauchy problem

u0ðtÞ ¼ ðAþ BÞuðtÞ; t 2 ½0; T�; ð2Þ

uð0Þ ¼ u0; ð3Þ

where A and B are bounded linear operators and u0 is initial condition. For such problem, the exact solution can be given as

uðtÞ ¼ expððAþ BÞÞu0; t 2 ½0; T�: ð4Þ

The method is based on iteration by fixing the splitting discretization step size Dt on time interval [tn, tn+1]. The following
algorithms are then solved consecutively for i = 1,3, . . . ,2m + 1.

u0iðtÞ ¼ AuiðtÞ þ Bui�1ðtÞ with uiðtnÞ ¼ un; ð5Þ

u0iþ1ðtÞ ¼ AuiðtÞ þ Buiþ1ðtÞ with uiþ1ðtnÞ ¼ un; ð6Þ

where un is the known split approximation at time level t = tn and u0 � 0 is the initial guess. The split approximation at the
time-level t = tn+1 is defined as un+1 = u2m+2(tn).

3. Stability analysis of iterative splitting method on KdV equation via von Neumann

In this section, we will investigate the stability analysis of iterative splitting method for KdV equation via von Neumann
approach. Consider again the KdV equation of the form

ut þ 6uux þ uxxx ¼ 0: ð7Þ

Firstly, split Eq. (7) into two parts

ut ¼ �uxxx and ut ¼ �6uux ð8Þ

and apply iterative splitting schemes, then have the following algorithms:

u0i ¼ �ðuiÞxxx þ 6ui�1ðui�1Þx; ð9Þ

u0iþ1 ¼ �ðuiÞxxx þ 6uiðuiþ1Þx; ð10Þ

where i = 1,3, . . . ,2m + 1.
Note that, in this approach, it is not necessary to specify a spatial discretization technique.
Rearrangement of algorithms (19) and (20) with a linearization about steady state 6ui�1 = k1, 6ui = k2 yields

u0i ¼ L1ui þ k1L2ui�1; ð11Þ

u0iþ1 ¼ L1ui þ k2L2uiþ1; ð12Þ

where L1 ¼ � @3

@x3 ; L2 ¼ � @
@x and i = 1,3, . . . ,2m + 1.

Secondly, combine algorithms (11) and (12) with the second order midpoint rule then have
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where Dt is the time step on [tn, tn+1] interval.
Finally, Eq. (13) can be put in the following matrix form
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by taking the fourier transform according to the formula

ûðwÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

Z
R

e�iwxuðxÞdx: ð15Þ
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