
Partial resolution for redundant operation table

Byung-Soo Choi, Jun-Dong Cho *

School of Information and Communication, Sungkyunkwan University, Republic of Korea

Available online 4 July 2007

Abstract

In this work, we discuss several drawbacks of the conventional wide-width redundant operation table such as the waste of area cost
and power consumption. We found that the waste of area cost and power consumption is caused by storing meaningless bits of the nar-
row-width operand values. Based on this analysis, we propose a way to avoid these storing of meaningless information of the narrow-
width operands. The proposed method, partial resolution method, divides the conventional wide-width redundant operation table into
two tables as the wide-width table for the half entries and the narrow-width table for the other half entries. The wide-width and the nar-
row-width redundant operation tables store different dynamic instructions whose operand values are wide and narrow, respectively. Since
the narrow-width redundant operation table stores smaller number of bits, it requires lower area cost and also power consumption com-
pared with the wide-width redundant operation table. The partial resolution method decreases the area cost by about 7% and 20% for the
integer and the floating-point tables, respectively, and reduces the dynamic power consumption by about 34% and 30% for the integer
and the floating-point tables, respectively, compared with the conventional wide-width redundant operation table with 2K entries. Mean-
while, the performance simulation with a high-end microarchitecture model and SPEC2000 benchmarks shows that the partial resolution
method affects the performance very little, and even increases slightly in terms of IPC (Instruction per Cycle) value.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Redundant operation table; Microarchitecture; Instruction-level parallelism; High performance; Low implementation cost; Low power

1. Introduction

Many methods for the high performance microproces-
sors have been proposed to increase the instruction-level
parallelism. With the higher instruction-level parallelism,
many operations executes speculatively. Meanwhile many
of the speculative and the non-speculative operations
may be redundant. Note that an operation is redundant
when its inputs are the same with that of previous execu-
tion. It is important to indicate that the speculative or
the redundant operations limit the performance improve-
ment, and increase the power consumption as well [1–3].
In other words, a high performance method has advantages
such as the higher speedup and disadvantages such as the
more redundant operations in general. Since a redundant
operation generates the same result value with a previous

instance of the same operation, it wastes the power con-
sumption and the execution time. To reduce such draw-
backs of the redundant operations, many optimization
methods have been proposed (refer [4–6] and references
therein). One of the solutions is the elimination method
of the redundant operations by the simple lookup opera-
tions of a table (refer [7–22] and references therein), which
is called a redundant operation table. Note although there
are many different names of the conceptually same table,
the redundant operation table is used in this work just
for a consistency. Usually a redundant operation table
stores two operands as a tag and one result as an output
of the operation.

Although the redundant operation table was originally
proposed to reduce the waste of the computation time
and the power consumption caused by the redundant oper-
ations, it has also its own drawbacks. Since a redundant
operation table requires large number of bits in the tag
and the result parts, it also increases the area cost and
the power consumption of the processor itself. For

0141-9331/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2007.06.003

* Corresponding author.
E-mail addresses: bschoi3@gmail.com (B.-S. Choi), jdcho@skku.ac.kr

(J.-D. Cho).

www.elsevier.com/locate/micpro

Available online at www.sciencedirect.com

Microprocessors and Microsystems 32 (2008) 79–94

mailto:bschoi3@gmail.com
mailto:jdcho@skku.ac.kr


example, a redundant operation table requires more than
the half of the area cost for the instruction and the data
caches in the high-end microprocessor Alpha 21264, and
hence adds more than the half of the total power consump-
tion. Section 4 explains more precisely several drawbacks
of the redundant operation table. Hence unless the area
cost and the power consumption of the redundant opera-
tion table are minimized, the motivation of proposing the
redundant operation table is questionable. Surprisingly
there have been no studies to touch such drawbacks of
the redundant operation table as far as we know.

Hence in this work we propose a way to resolve the
above-mentioned drawbacks. It is better to understand
the structure of the redundant operation table to find any
clues for achieving our purpose. The redundant operation
table stores two operands and a result value of the previ-
ously executed operations [16,17]. Usually, two operands
and one result in the conventional wide-width redundant
operation table require a sufficiently large number of bits
in order to support the full precision of the register value
for the target processor. Meanwhile, compared with the
data cache, the redundant operation table assumes two
operands as a tag for a corresponding entry. Since the
number of operands is usually two and the number of
result is one, the tag part stores more bits than the result
part in the redundant operation table. Since the tag part
stores a large number of bits, it requires higher area cost
and more power consumption than the result part. There-
fore, in this work, we focus on the tag part, and introduce
an optimization method for it.

In this paper, we make the following contributions.
Analyze operand values: We analyze all executed or

dynamic instructions, which require two operands, of the
chosen SPEC2000 benchmark programs. A preliminary
analysis of the operand values for the integer and the float-
ing-point operations reveals that the most operands can be
represented with a small number of bits. Therefore, a full
precision tag is not required for all instructions, and we call
it an operand locality.

Propose partial resolution method: To exploit the men-
tioned operand locality, we propose a partial resolution

method for the tag part in the conventional wide-width
redundant operation table. Note that the concept of the
partial resolution method looks similar to the partial-tag
method [23], which was proposed for the value predictors.
However, two ways are quite different since the partial-tag
method for the value predictors stores only partial infor-
mation of operands, but the partial resolution method for
the redundant operation table must store exact information
of operands. Hence, the partial-tag method for a value pre-
dictor cannot be directly used for the redundant operation
table. To implement the partial resolution method, we pro-
pose a wide–narrow-width redundant operation table,
which consists of two redundant operation tables: the
wide-width redundant operation table for the half entries
and the narrow-width redundant operation table for the
other half entries. The wide-width redundant operation

table works the same as the conventional wide-width
redundant operation table except it stores not all instruc-
tions but some instructions whose operand values require
a wide bit width. On the other hand, the narrow-width
redundant operation table stores some instructions whose
operands require a narrow bit width, but sufficient, to rep-
resent the exact information of the operands. Therefore
each instruction must be stored in the one of two tables
depends on the width of the operand values.

Analyze partial resolution method: The partial resolution
method decreases the area cost by about 7% and 20% at the
maximum for the integer and the floating-point redundant
operation tables, respectively, compared with the conven-
tional ones. Also it reduces the dynamic power consump-
tion of the conventional wide-width redundant operation
table by about 34% and 30% at the maximum for the inte-
ger and the floating-point operations, respectively. Note
that to analyze the integer and the floating-point redundant
operation tables at the same time, we simulate a chosen set
of SPEC2000 floating-point benchmarks only since it con-
tains both the integer and the floating-point operations.
The performance simulation with a high-end microarchi-
tecture shows a negligible performance variation and even
a slight improvement in terms of IPC (instruction per cycle)
values.

This paper is organized as follows. Related works are
discussed in Section 2. Section 3 illustrates the way for
the elimination of redundant operations and its table struc-
ture as a redundant operation table. Section 4 discusses
several drawbacks of the conventional wide-width redun-
dant operation table, and explains the motivation of this
work. Section 5 describes the proposed partial resolution
method to exploit the locality of operands, and explains
its implementation as the wide–narrow-width redundant
operation table. The effects of the partial resolution
method for the area cost, the power consumption, and
the performance are analyzed in Section 6. Section 7 con-
cludes this research with a discussion about the advantages
of the partial resolution method, and talks about several
future works.

2. Related works

Many ways have been proposed to eliminate redundant
executions statically or dynamically. Generally a static
method is based on a compiler optimization method to
reduce trivial computations or to replace a complex opera-
tion into a simplified operation. On the other hand, a
dynamic approach utilizes a table, which is called a redun-
dant operation table in this work, to memorize the
instances or the traces of operations. In the performance
improvement point of view, the dynamic ways are better
than the static ways since the former can find all redundant
operations while the latter cannot. Although it is almost
impossible to discuss all related works in this paper, we
briefly discuss several, but mostly related, previous works
in this section.

80 B.-S. Choi, J.-D. Cho / Microprocessors and Microsystems 32 (2008) 79–94



Download English Version:

https://daneshyari.com/en/article/463066

Download Persian Version:

https://daneshyari.com/article/463066

Daneshyari.com

https://daneshyari.com/en/article/463066
https://daneshyari.com/article/463066
https://daneshyari.com

