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1. Introduction, notations and background

The main objective of the present paper is to discuss singular perturbation boundary value problems (BVPs) for degen-
erate differential operator equation (DOE)
Lu = —eu® (x) + Au(x) + &2A; (x)ul (x) + Ay (x)u(x) = f,
on (0,1), where

; , i} L, dl
Dlu = ull(x) = {xu (1—x)" a} u(x)
and ¢ is a small parameter.
In applications maximal regularity properties of Cauchy problem for the following degenerate parabolic equation with

small parameter
U, — eDZu(t, x) + Au(t, x) + A (ull(t, x) + A, (x)u(t,x) = f(y,x), teR,, xe (0,1)

is established, where A, A;, A, are linear operators in a Banach space E. The above singular perturbation problems occur in
different situation of fluid mechanics environmental engineering et.s.

Note that, DOEs are studied e.g. in [1-9] and [11,12].

Let y = p(x), x = (x1,X2,...,X,;) be a positive measurable function on a domain Q c R". Let L,, (£;E) denote the space of
strongly measurable E-valued functions that are defined on 2 with the norm

L, = Il ap = ( / \Lf(X>||’§V(X)dX>ﬁ, 1<p<w.
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For y(x) = 1 the space L, (2;E) will be denoted by L, =L, (£;E).
Let E(A%) denote the space D(A?) with norm

Ul = (lull® + IA’uP, 1<p<oo, 0<0<0co.
Consider the BVP for DOE
(L+ Au=—eu®(x) + (A+ u(x) = f,x € (0,b)

Llu:ZS"k {cxku(")(O)Jr Sy (Xkl)} =fi

k=0
3

Lzu = Zg”k |:ﬁku(k) (b) +
k=0

where my € {0,1}; o =5+ L 35+ Ok Prs Okis Via are complex numbers and x;; € (0,b); A is a possible unbounded operator in E

and A, =A+7; 0<y<1, fjeX= (E(A),E){,jip, 0; = (E (A),E)(,j.p are interpolation spaces obtained from {E(A),E}
by the K-method [10, Section 1.3.2]. For definitions see [8,9], for instance.
From [8] we obtain

=

Il
—_

'MZ

Vii (Xkl):| f27

Theorem A,. Let the following conditions be satisfied:

(1) y=x1(b—-x)", 0<y,, Y, <1 —I’;, pe(l,o0), j=1,2,....m—1,0< pu<1-4;

(2) E is a Banach space satisfying the multiplier condition with respect to p and weighted function y, p € (1,00), 0< e < T< o0
and 0 < h < hy < 0o are certain parameters;

(3) A is an R-positive operator in E;

Then, the embedding
i P
DW™ (0, b; E(A).E) C Lp,),<0, b;E(A1 m "))
is continuous and there exists a positive constant C,, such that
(-
h"'” u? H o OBEA ) <Gy [h w0 bk ) + ht m”u”Lp;-(O‘b;E)}

forallueWm(ObE() E) and h;
IfAleo ( )and 0 < u < 1 — L then the embedding

DW™ (a,b:E(A),E) C Ly, (a, b; E(Al’%’“»

is compact.
In a similar way as [9] we obtain.

Theorem A,. Let the following conditions be satisfied:

(1) ot i, dxj are complex numbers, o, # 0, f, # 0, a > 0, t is a small positive parameter;
(2) E is the Banach space satisfying the multiplier condition with respect to p and weighted function

P(x) =7, 0<*/<1—%, 1<p <o
(3) Ais an R positive operator in E.

Then, the problem (1) for all f € L,,(0,b; E) andf; € has a unique solution u ¢ W ,(0,b; E(A), E). Moreover for |argZ| < ¢ and
sufficiently large |2| the following uniform coercive estimate holds

2

1_i
ZW Zedu® Ly, 008 + AU, , 0.b:k) |:V|Lp0bE +Z|fo}
i=0

Consider the BVP for the degenerate differential-operator equation with small parameter

Lu = —euP (x) + Au(x) + &2A, (x)u" (x) + A, (x)u(x) = f, x€(0,1),

m . m; . (2)
Liu=Y e%oul(0)=0, Lu=>Y &ipul(1)=0,

0 =0
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