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a b s t r a c t

In this paper, a competitive Lotka–Volterra system with three delays is investigated. By
choosing the sum s of three delays as a bifurcation parameter, we show that in the above
system, Hopf bifurcation at the positive equilibrium can occur as s crosses some critical
values. And we obtain the formulae determining direction of Hopf bifurcation and stability
of the bifurcating periodic solutions by using the normal form theory and center manifold
theorem. Finally, numerical simulations supporting our theoretical results are also
included.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The n-species Lotka–Volterra competition system with delays can be modeled by the following system

_xiðtÞ ¼ xiðtÞ ri �
Xn

j¼1

aijxjðt � sijÞ
" #

; i ¼ 1;2; . . . ;n;

where ri; aij; sij ði; j ¼ 1;2; . . . ;nÞ are positive constants, and xi ði ¼ 1;2; . . . ;nÞ can be interpreted as the densities of certain
species. In the absence of interspecific interactions, the species is governed by the well known logistic equation
_xðtÞ ¼ xðtÞ½r � kxðtÞ�. In the presence of interactions, each species restrains the average growth rate of the other and has
the corresponding delay.

Recently, there have been extensive literatures dealing with the above system or systems similar to the above system,
regarding attractivity, persistence, global stabilities of equilibrium and other dynamics (see, for example, [1,2,14–19] and
references therein). For a long time, it has been recognized that delays can have very complicated impact on the dynamics
of a system (see, for example, monographes by Hale and Lunel [4], Kuang [6] and Wu [9]). For example, delays can cause the
loss of stability and can induce various oscillations and periodic solutions through the Hopf bifurcation in delay differential
equations, and the study on the stability and local Hopf bifurcation of systems similar to the above system can be seen in [3–
13].

In this paper, we consider the following three-species Lotka–Volterra competition system with discrete delays described
by
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_x1ðtÞ ¼ x1ðtÞ½r1 � a11x1ðtÞ � a13x3ðt � s3Þ�;
_x2ðtÞ ¼ x2ðtÞ½r2 � a21x1ðt � s1Þ � a22x2ðtÞ�;
_x3ðtÞ ¼ x3ðtÞ½r3 � a32x2ðt � s2Þ�

8><
>: ð1:1Þ

and the initial conditions

_xiðtÞ ¼ UiðtÞP 0; t 2 ½�s;0Þ; Uið0Þ > 0; s ¼ s1 þ s2 þ s3; i ¼ 1;2;3; ð1:2Þ

where x1ðtÞ; x2ðtÞ; x3ðtÞ denote the density of species at time t, respectively; si ði ¼ 1;2;3ÞP 0 is the feedback time delay of
species xiðtÞ ði ¼ 1;2;3Þ to the growth of species itself; ri ði ¼ 1;2;3Þ > 0 is the intrinsic growth rate of the ith species and
aij

ri
> 0ði; j ¼ 1;2;3Þ are interaction coefficients measuring the extent to which the jth species affects the growth rate of the

ith species.
Considered the biological interpretation of system (1.1), there is always a unique positive equilibrium E� ¼ ðx�1; x�2; x�3Þ pro-

vided that the condition

ðH1Þa32r2 > a22r3;

ðH2Þa21a32r1 þ a11a22r3 > a11a32r2

hold, where

x�1 ¼
a32r2�a22r3

a21a32
;

x�2 ¼
r3

a32
;

x�3 ¼
a21a32r1þa11a22r3�a11a32r2

a32a21a13
:

When the delay s1 ¼ s2 ¼ s3 ¼ 0, the system (1.1) simplifies to an autonomous system of ordinary differential equation of
the form

_x1ðtÞ ¼ x1ðtÞ½r1 � a11x1ðtÞ � a13x3ðtÞ�;
_x2ðtÞ ¼ x2ðtÞ½r2 � a21x1ðtÞ � a22x2ðtÞ�;
_x3ðtÞ ¼ x3ðtÞ½r3 � a32x2ðtÞ�:

8><
>: ð1:3Þ

The main purpose of this paper is to investigate the effects of the delay on the solutions of system (1.1), and we mainly
study the stability, the local Hopf bifurcation for system (1.1). We would like to mention that bifurcations in a population
dynamics with a single delay or two delays had been investigated by many researchers (see, for example, [3–13]). However,
there are few papers on the bifurcation of a population dynamics with three delays or multiple delays. Hence, the research of
Hopf bifurcation for competitive Lotka–Volterra systems with three or multiple delays is worth further consideration.

The remainder of the paper is organized as follows. In Section 2, the stability of the equilibrium and the existence of Hopf
bifurcation at the positive equilibrium are studied. In Section 3, the direction of Hopf bifurcation, stability and period of
bifurcating periodic solutions on the center manifold are determined. Numerical simulations supporting our theoretical re-
sults are also included in Section 4. Finally, we give some biological explanations and conclusions.

2. Stability of the positive equilibrium and existence of local Hopf bifurcation

In this section, we always have the following assumption.

ðH3Þða2
11a22a32 þ a11a21a2

32Þr2 þ a11a21a2
22r3 > a2

21a2
32r1 þ ða2

11a2
22 þ a11a22a21a32Þr3:

For convenience, let us introduce new variables u1ðtÞ ¼ x1ðt � s1 � s2Þ;u2ðtÞ ¼ x2ðt � s2Þ;u3ðtÞ ¼ x3ðtÞ; s ¼ s1 þ s2 þ s3 so
that system (1.1) can be written as the following equivalent system with a single delay:

_u1ðtÞ ¼ u1ðtÞ½r1 � a11u1ðtÞ � a13u3ðt � sÞ�;
_u2ðtÞ ¼ u2ðtÞ½r2 � a21u1ðtÞ � a22u2ðtÞ�;
_u3ðtÞ ¼ u3ðtÞ½r3 � a32u2ðtÞ�:

8><
>: ð2:1Þ

Under the hypothesis ðH1;H2;H3Þ, let v1ðtÞ ¼ u1ðtÞ � x�1;v2ðtÞ ¼ u2ðtÞ � x�2; v3ðtÞ ¼ u3ðtÞ � x�3, the system (2.1) can be rewrit-
ten as the following equivalent system:

_v1ðtÞ ¼ ðv1ðtÞ þ x�1Þ½�a11v1ðtÞ � a13v3ðt � sÞ�;
_v2ðtÞ ¼ ðv2ðtÞ þ x�2Þ½�a21v1ðtÞ � a22v2ðtÞ�;
_v3ðtÞ ¼ ðv3ðtÞ þ x�3Þ½�a32v2ðtÞ�:

8><
>:

Hence, the positive equilibrium E�ðx�1; x�2; x�3Þ of system (1.1) is transformed into zero equilibrium of the above system.
Linearizing the above system about the equilibrium ð0;0;0Þ and replacing v iðtÞ with uiðtÞ ði ¼ 1;2;3Þ, we can get the
following linear system.
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