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a b s t r a c t

In this paper, we propose a double projection algorithm for a generalized variational
inequality with a multi-valued mapping. Under standard conditions, our method is proved
to be globally convergent to a solution of the variational inequality problem. Moreover, we
present a unified framework of projection-type methods for multi-valued variational
inequalities. Preliminary computational experience is also reported.
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1. Introduction

We consider the following generalized variational inequality: to find x⁄ 2 C and n 2 F(x⁄) such that

hn; y� x�iP 0; 8y 2 C; ð1Þ

where C is a nonempty closed convex set in Rn; F is a multi-valued mapping from C into Rn with nonempty values, and h�, �i
and k�k denote the inner product and norm in Rn, respectively.

Theory and algorithm of generalized variational inequality have been much studied in the literature [1–9]. Various
algorithms for computing the solution of (1) are proposed. The well-known proximal point algorithm [10] requires the
multi-valued mapping F be monotone. Relaxing the monotonicity assumption, [1] proved if the set C is a box and F is order
monotone, then the proximal point algorithm still applies for the problem (1). Assume that F is pseudomonotone, [11] de-
scribed a combined relaxation method for solving (1); see also [12,13]. Projection-type algorithms have been extensively
studied in the literature, see [14–16] and the references therein. Here we will devise a double projection algorithm for gen-
eralized variational inequality and prove the global convergence of the generalized iteration sequence, assuming that F is
pseudomonotone in the sense of Karamardian [17]. At the same time, we present a unified framework of projection-type
method for multi-valued variational inequalities and show that the framework is globally convergent under mild assump-
tion. Furthermore, if F is a single-valued mapping, this framework contains as special cases the double projection methods
for the corresponding single-valued variational inequalities.

Let S be the solution set of (1), that is, those points x⁄ 2 C satisfying (1). Throughout this paper, we assume that the
solution set S of the problem (1) is nonempty and F is continuous on C with nonempty compact convex values satisfies
the following property:

hf; y� xiP 0; 8y 2 C; f 2 FðyÞ; 8x 2 S: ð2Þ
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The property (2) holds if F is pseudomonotone on C in the sense of Karamardian. In particular, if F is monotone, then (2)
holds.

The organization of this paper is as follows. In the next section, we recall the definition of continuous multi-valued map-
ping and present the algorithm details and prove several preliminary results for convergence analysis in Section 3. We give a
unified framework of projection-type algorithm for multi-valued variational inequalities in Section 4. Numerical results are
reported in the last section.

2. Algorithms

Let us recall the definition of continuous multi-valued mappings. F is said to be upper semicontinuous at x 2 C if for every
open set V containing F(x), there is an open set U containing x such that F(y) � V for all y 2 C \ U. F is said to be lower semi-
continuous at x 2 C if give any sequence xk converging to x and any y 2 F(x), there exists a sequence yk 2 F(xk) that converges
to y. F is said to be continuous at x 2 C if it is both upper semicontinuous and lower semicontinuous at x. If F is single-
valued,then both upper semicontinuity and lower semicontinuity reduce to the continuity of F.

Let PC denote the projector onto C and let l > 0 be a parameter.

Proposition 2.1. x 2 C and n 2 F(x) solves the problem (1) if and only if

rlðx; nÞ :¼ x�PCðx� lnÞ ¼ 0:

Algorithm 1. Choose x0 2 C and three parameters r > 0, l 2 (0,1/r) and c 2 (0,1). Set i = 0.

Step 1. If rl(xi,n) = 0 for some n 2 F(xi), stop; else take arbitrarily ni 2 F(xi).
Step 2. Let ki be the smallest nonnegative integer satisfying

inf
y2F xi�cki rlðxi ;niÞð Þ

hni � y; rlðxi; niÞi 6 rkrlðxi; niÞk2
: ð3Þ

Set gi ¼ cki and zi = xi � girl(xi,ni).
Step 3. Compute xiþ1 :¼ PCi

ðxiÞ; where Ci :¼ {x 2 C : hi(x) 6 0} and

hiðxÞ :¼ sup
n2FðziÞ

hn; x� zii: ð4Þ

Let i :¼ i + 1 and go to Step 1.

Remark 2.1. Let us compare the above algorithm with Algorithm 1 in [15]. First, ni can be taken arbitrarily in our method. In
[15], choosing ni needs solving a single-valued variational inequality and hence is computationally expensive. Furthermore,
our method only requires two projections at each iteration and Algorithm 1 in [15] used three ones. In addition, Armijo-type
linesearch procedures in the two algorithms are also different.

We show that Algorithm 1 is well-defined and implementable.

Proposition 2.2. If xi is not a solution of the problem (1), then there exist a nonnegative integer ki satisfying (3).

Proof. Suppose that for all k and all y 2 F(xi � ckrl(xi,ni)) we have hni � y,rl(xi,ni)i > rkrl(xi,ni)k2. Since F is lower semicontin-
uous, ni 2 F(xi) and limk?1(xi � ckrl(xi,ni)) = xi, there exists a sequence yk 2 F(xi � ckrl(xi,ni)) such that limk?1yk = ni. We have
hni � yk, rl(xi,ni)i > rkrl(xi,ni)k2, for each k. Hence kni � ykk > rkrl(xi,ni)k, for each k. Let k ?1,we have 0 = kni � nikP
rkrl(xi,ni)k > 0. This contradiction completes the proof. h

Lemma 2.1. For every x 2 C and n 2 F(x),

hn; rlðx; nÞiP l�1krlðx; nÞk2
:

Proof. See [15, Lemma 2.3]. h

Lemma 2.2. The function hi defined by (4) is Lipschitz on Rn.

Proof. See [15, Lemma 2.2]. h
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