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1. Introduction

We consider the following generalized variational inequality: to find x* € C and ¢ € F(x*) such that
<£7y_X*> = 0’ Vy € C7 (])

where C is a nonempty closed convex set in R", F is a multi-valued mapping from C into R" with nonempty values, and (-,-)
and ||-|| denote the inner product and norm in R", respectively.

Theory and algorithm of generalized variational inequality have been much studied in the literature [1-9]. Various
algorithms for computing the solution of (1) are proposed. The well-known proximal point algorithm [10] requires the
multi-valued mapping F be monotone. Relaxing the monotonicity assumption, [1] proved if the set C is a box and F is order
monotone, then the proximal point algorithm still applies for the problem (1). Assume that F is pseudomonotone, [11] de-
scribed a combined relaxation method for solving (1); see also [12,13]. Projection-type algorithms have been extensively
studied in the literature, see [14-16] and the references therein. Here we will devise a double projection algorithm for gen-
eralized variational inequality and prove the global convergence of the generalized iteration sequence, assuming that F is
pseudomonotone in the sense of Karamardian [17]. At the same time, we present a unified framework of projection-type
method for multi-valued variational inequalities and show that the framework is globally convergent under mild assump-
tion. Furthermore, if F is a single-valued mapping, this framework contains as special cases the double projection methods
for the corresponding single-valued variational inequalities.

Let S be the solution set of (1), that is, those points x* € C satisfying (1). Throughout this paper, we assume that the
solution set S of the problem (1) is nonempty and F is continuous on C with nonempty compact convex values satisfies
the following property:

Cy—-x) =0, VyeC, (eF(y), VxeS. (2)
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The property (2) holds if F is pseudomonotone on C in the sense of Karamardian. In particular, if F is monotone, then (2)
holds.

The organization of this paper is as follows. In the next section, we recall the definition of continuous multi-valued map-
ping and present the algorithm details and prove several preliminary results for convergence analysis in Section 3. We give a
unified framework of projection-type algorithm for multi-valued variational inequalities in Section 4. Numerical results are
reported in the last section.

2. Algorithms

Let us recall the definition of continuous multi-valued mappings. F is said to be upper semicontinuous at x € C if for every
open set V containing F(x), there is an open set U containing x such that F(y) c Vfor ally € Cn U. F is said to be lower semi-
continuous at x € C if give any sequence x, converging to x and any y € F(x), there exists a sequence y, € F(xx) that converges
to y. F is said to be continuous at x € C if it is both upper semicontinuous and lower semicontinuous at x. If F is single-
valued,then both upper semicontinuity and lower semicontinuity reduce to the continuity of F.

Let I1c denote the projector onto C and let i > 0 be a parameter.

Proposition 2.1. x € C and ¢ € F(x) solves the problem (1) if and only if
ru(x, &) :==x—Tlc(x — ué) = 0.

Algorithm 1. Choose X, € C and three parameters o >0, u <(0,1/g) and 7y <(0,1). Set i=0.

Step 1. If r,(x; &) = 0 for some ¢ € F(x;), stop; else take arbitrarily &; € F(x)).
Step 2. Let k; be the smallest nonnegative integer satisfying

inf (& =y ru(xi, &) < allruxi, &)1 3)
}’EF(Xrﬂ’ki "u(’ﬁ@i))

Set i; = y% and z; = X; — niru(xi, &)
Step 3. Compute x;,; := Il¢,(x;), where G;:={x € C: h(x) < 0} and
hi(x) == sup (&, X — z,). (4)

EeF(z;)
Leti:=i+1 and go to Step 1.
Remark 2.1. Let us compare the above algorithm with Algorithm 1 in [15]. First, & can be taken arbitrarily in our method. In
[15], choosing &; needs solving a single-valued variational inequality and hence is computationally expensive. Furthermore,
our method only requires two projections at each iteration and Algorithm 1 in [15] used three ones. In addition, Armijo-type

linesearch procedures in the two algorithms are also different.
We show that Algorithm 1 is well-defined and implementable.

Proposition 2.2. If x; is not a solution of the problem (1), then there exist a nonnegative integer k; satisfying (3).

Proof. Suppose that for all k and all y € F(x; — y"rﬂ(xi, &) we have (& — y,r,(x;, &)) > o||ru(xi, ii)|\2. Since F is lower semicontin-

uous, & € F(x;) and limy_, .o(x; — y"r#(x,‘, &) = x;, there exists a sequence y; € F(x; — y"rﬂ(xi. &;)) such that limy._, ..y, = &. We have
(& — Vi TulXi &) >a|\rﬂ(x,-,éi)\|2, for each k. Hence ||& — yi|| > ollru(xi,&)||, for each k. Let k — oo,we have 0=||& — & >
a||ru(x:, &) > 0. This contradiction completes the proof. [

Lemma 2.1. For every x € C and ¢ € F(x),

(a9 = 1 ru(x, QI
Proof. See [15, Lemma 2.3]. O
Lemma 2.2. The function h; defined by (4) is Lipschitz on R".

Proof. See [15, Lemma 2.2]. O
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