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a b s t r a c t

The fast marching method (FMM) is an efficient technique to solve numerically the Eikonal
equation. The parallelization of the FMM is not easy because of its intrinsic sequential nat-
ure. In this paper we propose a novel approach to parallelize the FMM. It leads to an equa-
tion-dependent domain decomposition and it turns out to be particularly suitable for
machines with two or four cores that are in common use today. Compared to other tech-
niques in the field, the proposed method is much simpler to implement and it gives a
slightly better computational speed-up.

In order to test the new method on a real-world application, we solve the shape-from-
shading problem based on a Hamilton–Jacobi equation. On a standard four-core machine,
the method confirms the good properties. It shows a reasonable speedup factor of about
2.5, and it reveals its potential to good performance if the arithmetic density of the problem
is high.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The fast marching method (FMM) is an efficient technique to solve numerically the Eikonal equation

f ðxÞjruðxÞj ¼ 1; x 2 Rd n C0

uðxÞ ¼ u0ðxÞ; x 2 C0;

(
ð1Þ

where f(x) > 0 is a given Lipschitz continuous function, and C0 is a (d � 1)-dimensional manifold in Rd. Eq. (1) is well-posed in
the framework of viscosity solutions [1]. The unique viscosity solution u of (1) is in general not differentiable, even if
f 2 C1ðRdÞ and C0 is smooth.

Eikonal and Eikonal-type equations appear in a number of different application fields [2], such as computer vision, image
processing, optics, geoscience, and medical image analysis. In some cases, the approximation of the solution must be carried
out on very large grids, requiring a significant computational time. For instance, this is the case of applications in computer
vision such as shape from shading [3], or in image processing tasks such as inpainting [4] on real-size digital images.
Although the FMM is much faster than a classic iterative algorithm where all the grid nodes are visited iteratively in a pre-
defined order [5,6], solving Eq. (1) on large grids in real-time is still out of reach. In order to obtain a significant potential
speed-up of the algorithm, an interesting option is to parallelize it. This paper proposes a novel parallel algorithm for
FMM, which is both fast and easy to implement.
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Let us give a brief discussion of the FMM, restricting to the case of d = 2 to avoid cumbersome notations. FMM was intro-
duced in [7–9], and it is based on Dijkstra’s classic shortest path algorithm for graphs [10]. A complete proof of convergence
can be found in [5], together with the right assumptions on the set-up that lets the method work in practice. First, a bounded
computational domain X � C0 is introduced and discretized by a regular grid G = {(xi,yj);i = 1, . . . ,Nx; j = 1, . . . ,Ny}. Every cell
is a square of side length Dx. Eq. (1) is then discretized by means of the usual upwind first-order finite-difference approx-
imation introduced in [11]. uij denotes the approximation of the solution u at (xi,yj).

It can be shown that an iterative fixed-point algorithm based on this discretization converges, in a large number of iter-
ations, to the viscosity solution [11]. The idea behind the FMM is to introduce an ordering in the selection of the grid nodes in
such a way that convergence is reached in just one iteration over the grid.

The FMM realizes this as follows. During the computation, the grid G is always partitioned in three sets named accepted,
trial and far, respectively. The accepted nodes are those where the solution has been already computed; an accepted value
does not change any more. The trial nodes are the nodes where the computation actually takes place. Their value can still
change as long as they are labelled as trial. Finally, the far nodes are the remaining nodes where an approximate solution
has not been computed yet. For initialization, the nodes adjacent to C0 are labelled as accepted and their value is set to
u0. All the values at non-accepted nodes adjacent to an accepted node are computed using the upwind scheme, and these
nodes are labelled as trial. All the remaining nodes are labelled as far and their value is set to infinity, or just to a very large
value. At every step of the algorithm, the trial node with the minimal value is labelled as accepted, and all its far neighbours
are labelled as trial. Only the non-accepted neighbours of the last accepted node are computed. The accept-the-minimum rule
is crucial, and it is based on the fact that a value can not be affected by other values larger than itself. The principle behind
the latter property is called causality principle. The algorithm ends when all the nodes are accepted.

The FMM has been the subject of many researches since its introduction, leading to a number of improvements. Papers
[12–14] proposed modifications to speed up the method and drop the computational complexity. Papers [5,15–17] deal in-
stead with modifications leading to a higher accuracy of the approximate solution. FMM can be also adapted to solve more
general Hamilton–Jacobi equations. This has been proven in [18], and then investigated in more detail in [19]. Meanwhile,
several extensions of the FMM, such as in [18,20–24], were proposed.

Regarding parallelization techniques for the FMM the literature is quite scarce. This is due to the fact that the FMM works
in a highly sequential way. Indeed, only one node per iteration becomes accepted, and nodes must be computed in a special
order so that the causality principle is respected. Until now, [25–27] have been the only three notable works that discussed
parallelization of the FMM. [25] proposes a parallel algorithm based on a classical domain-decomposition method. [26]
attempted modifying the method in technical detail. [27] focused on a parallel implementation using graphics processing
units (GPUs). However, while the algorithm presented in that paper is somewhat similar to the FMM, it is specifically tailored
to geodesic distance computation. In this paper, the method as applied in [25] is considered, since the algorithmic basis and
the assumed underlying computer architecture are identical to those of the proposed method.

There exist also other parallelization strategies for solving the Eikonal Eq. (1). One of these approaches is based on the Fast
Sweeping Method [28] for which a parallelization was proposed in [29]. Another one is the Fast Iterative Method [30,31]
which was parallelized on GPUs as described in the same papers.

This paper proposes a new parallelization technique for the FMM which creates automatically its own domain decompo-
sition that depends on f, u0, and C0. The new method is much easier to implement than the one proposed in [25]. The idea
adopted is to split the set C0 (rather than X) among the processors since the very beginning of the computation. Then the
subsets of C0 resulting from this splitting are used by separate processors as starting points for parallel computations. The
process interaction is realized by a relatively simple procedure constructed to satisfy the causality principle. Some numerical
tests validate the usefulness of the new approach. It turns out to be particularly useful for machines with two to four cores
and computationally competitive to the domain-decomposition technique employed in [25]. In order to test the new method
on a real-world application, we solve a modern version of the shape-from-shading problem, which is a classic inverse prob-
lem in computer vision. The mathematical model adopted in this paper is based on a Hamilton–Jacobi equation which can be
solved by means of FMM.

2. Domain-decomposition method

In this section, the domain-decomposition method (DDM) introduced in [25] is discussed briefly. Initially, the domain X is
divided in P sub-domains D1; . . . ;DP , P being the number of processes to use in parallel. Each domain is extended by ghost
nodes in the normal direction to the boundary, see Fig. 1. Ghost nodes are shared by neighbouring sub-domains and allow
communication between corresponding processes.

The next step is to assign processes. After the usual initialization of the sequential FMM, each sub-domain is assigned to
one process. Every process creates his own trial region, and starts working independently of the others. Basically, the load
balance depends on the domain decomposition and the shape/position of C0. It is possible that only one sub-domain
contains C0, and then, at the beginning of the computation, all processes but one are idle.

An important issue is communication between sub-domains. Every time a process updates a ghost node, the information
is communicated to the sub-domain the node is shared with. In this way the information flowing along characteristics moves
from a sub-domain to another, until the domain X is fully covered.
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