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a b s t r a c t

A framework for refining and hybridizing the heat balance integral method is proposed.
While showing the non-uniqueness of a combined integral method in the sense of Myers
and Mitchell [T.G. Myers, S.L. Mitchell, Application of the combined integral method to Ste-
fan problems, Applied Mathematical Modelling 35 (9) (2011) 4281–4294], it is evinced
through the hybrids advanced and benchmarks undertaken, that for the class of finite Puis-
eux series commonly employed, there are no globally efficient exponents. Synthesis of local
regions of high accuracy of these hybrids is realized through the introduction of an appli-
cable splicing algorithm.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

This article concerns the defining and structural aspects of the heat balance integral method (HBIM) or that which is
atimes known as the method of integral relations. We introduce new variants and hybrids of the HBIM hinged on a drawn
interconnection with moments of the state equation considered. Alongside these, in their implementation, the class of
admissible test profiles employed are deduced from appropriate interpolatory basis and or the form of the resultant oscu-
lating interpolation polynomials evoked by given boundary conditions.

The HBIM was introduced by Barenblatt [1] in his treatment of certain non-uniform homogeneous filtration problem gov-
erned by a class of nonlinear diffusion equation. The origin of the method is also ascribed to Dorodnitsyn, see [2,3] for in-
stance. Goodman [4] likewise suggested the method in his treatment of phase change problems.

Immediate and subsequent contributions to the development and adaptation of the technique to partial differential equa-
tions driving physical systems include those of Dorodnitsyn [5] in the introduction of a general framework for the method of
integral relations, Belotserkovskii and Chushkin [6,7] in the determination of critical Mach numbers of transonic and sub-
sonic potential flows past a body, Avduevskii [8] in the study of certain turbulent boundary layer problems, Goodman [9]
in his application of the technique to transient nonlinear heat transfer, and in the approximate analytic study of non-isother-
mal hydrodynamic processes in the lubrication layer of a sleeve bearing by Podol’skii [10], to name a few.

Without loss of generalization to higher dimensions, suppose the approximate-analytic solutions to an initial boundary
value partial differential equation
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is sought. The domain of definition clearly depends on t. The HBIM consists of the assumption of a test function v(x, t), say, of
spatio-temporal variables and undetermined parameters, which satisfies the boundary and/or initial conditions of the gov-
erning partial differential equation (PDE) and allowing the resulting residual to vanish, that is
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The residual, as in Eq. (2) above, is often taken relative to the spatial domain. This leads to a reduction to an ordinary differ-
ential equation (ODE) in the temporal variable of the PDE problem which is also akin to an averaging process [11]. Following
these, the parameters in the trial functions are obtained and the approximate-analytic solution determined. An alternate
viewpoint is that of regarding the residual as a zeroth moment of the PDE. In a general (n + 1)-dimensional setting with mov-
ing boundaries and coordinates xj; j ¼ 1;2; . . . ;n, a volume integral is taken over the changing spatial domain Xt, say, to have
a similar residual equationZ
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The strength of the HBIM lies in its simplicity and tractability. However, a major drawback of the technique lie in its accu-
racy which is strongly dependent on chosen test profiles. The main lines taken in addressing this concern are those of the
advancement of criteria for selection of appropriate test functions and or the sharpening of the structure of the HBIM tech-
nique. To varying degrees of success, attempts have been made at creating formalisms for test profile selection. For instance,
Volkov et al. [12] proposes a generalization of the HBIM impinging strongly on profile creation, Mosally et al. [13] motivates
Gaussian profiles based on observations, Hristov [14], Myers [15,16], Mitchell and Myers [17] propound systematic ap-
proaches for realizing optimal exponents for parabolic profiles, Layeni and Adegoke [18] introduces logistic profiles moti-
vated by consideration of phase change systems as those with competitive regimes, while Layeni and Adegoke [19]
construct profiles induced by properties of heat polynomials. Excellent reviews of current trends and approaches as regards
various aspects of the integral method are given in the works of Wood [9], Hristov [14], Mitchell et al. [20] and references
within.

The original idea of the HBIM involves the setting of the residual accrued by pertinent test profiles, with undetermined
parameters, to naught. This is equivalent to making the zeroth moment of the state expression over the moving domain van-
ish. With a view to improving the accuracy of the HBIM, Volkov and Li-Orlov [21] introduced the idea of taking a double inte-
gration in the treatment of the problem of transient heat conduction without phase change. This idea, which in its adaptation
to Stefan problems by Sadoun [22–24] was labeled the refined integral method (RIM), involves simultaneously allowing the
first and second residuals, over the moving domain, to vanish. It has been mentioned by several authors, for instance in [25–
28], without proof that the RIM is equivalent to a first moment. By the kth residual resultant of the test profile v(x, t), denote
the multiple integralZ dðtÞ
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over the moving domain. Given that there exists a connection between the first moment and second residual, it is natural to
seek to verify it and further examine if a similar and applicable relationship holds for arbitrary moments over the moving
domain. The following simple but effective result applies.

Theorem 1. Suppose the residuals of the state expression up to and including the kth vanish. Then the kth moment of the state
expression, over the moving boundary, is a constant multiple of the (k + 1)st residual.

Proof. This proof follows by induction. Given a trial profile v(x, t), we shall write F vðx; tÞ; @
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Likewise, the second moment which can be expressed asZ dðtÞ
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verifies the theorem when k = 2 since the first two integrals of the right hand side of Eq. (4) vanish. Suppose that the (k � 1) st
moment is a constant multiple of the kth residual. Then, the proof of the theorem follows sinceZ dðtÞ
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A characterization of the RIM is the following corollary:

Corollary 1. A solution of the defining ODE of the RIM is a zero of the first moment of the state expression.
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