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a b s t r a c t

In this paper, the exact solution of the quadratic mixed-parity Helmholtz–Duffing oscillator
is derived by using Jacobi elliptic functions. It is also shown that the exact period of oscil-
lation is given as a function of the complete elliptic integral of the first kind. At the end of
the paper, we examine the stability of the system and determine the regions for which
periodic and unbounded motions take place.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with the derivation of the exact solution of the mixed parity Helmholtz–Duffing oscillator of the form:

€xþ f ðxÞ ¼ 0; f ðxÞ ¼ Axþ Bx2 þ ex3 þ D1; ð1:1Þ

where, x denotes the displacement of the system, A is the natural frequency, e is a non-linear system parameter, and B and D1

are system parameters independent of time. Notice that f ðxÞ in Eq. (1.1) is a mixed-parity function since the following con-
ditions are satisfied [1]:

f ðxÞ ¼ fþðxÞ þ f�ðxÞ;
fþð�xÞ ¼ fþðxÞ; f�ð�xÞ ¼ �f�ðxÞ;
fþðxÞ– 0; f�ðxÞ– 0:

ð1:2Þ

The purpose of this paper is to look at the exact solution of Eq. (1.1) by using Jacobian elliptic functions. The main motivation
comes from the fact that exact solutions of certain equations of motion of the Duffing type are described precisely in terms of
elliptic functions and its period is expressible in terms of a complete elliptic integral of the first kind [2]. Tamura [3], Rand [4],
and Hu [5] used Jacobian elliptic functions to obtain the exact solution of a quadratic nonlinear oscillators. Also, the incom-
plete elliptic integral of the second kind was used by the author in [6] to developed the exact solution of Lame’s equation.

Of course, when a closed-form solution of a nonlinear differential equation is unknown, we can use perturbation tech-
niques to obtain its approximate solution. For instance, by using a slow space perturbative reduction, Hussein and Athel
showed that there are two different special solutions of Eq. (1.1) with e ¼ 0, and D1 ¼ 0 that depend on the initial conditions
to have stable or unstable system behavior [7]. Belhaq and Lakrad in [8] used the elliptic harmonic balance method to obtain
the approximate solution of a strongly, mixed parity non-linear oscillator. Mickens in [9] studied the solution behaviors of
three quadratic non-linear oscillators and concluded that there exist regions on which periodic solutions exist and that there
are regions for which only unbounded motions take place. Hu in [10] used the method of harmonic balance to obtain solu-
tions of quadratic nonlinear oscillators. He also used this method to calculate first order approximations to the periodic solu-
tion of Eq. (1.1) with D1 ¼ 0 and by imposing the restriction that initial conditions must be xð0Þ ¼ x0 > 0 and _xð0Þ ¼ 0 [11].
Cao et al. established a function relationship between the symmetry breaking phenomenon and the symmetric parameter e
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in the case for which B ¼ 1� e and D1 ¼ 0 in Eq. (1.1) [12]. They found that the symmetry breaking phenomena are strongly
dependent on e. Sun et al. study the non-linear response of strongly mixed parity nonlinear oscillators by modifying
Lindstedt–Poincaré method [13]. They found highly accurate analytical approximate frequencies and the corresponding
periodic solutions for small and large oscillation amplitudes. In an attempt to obtain approximate solutions to general strong
single degree of freedom conservative systems, Sun and coworkers developed in [13] a new approach by introducing two odd
nonlinear oscillators from the original nonlinear system described by Eq. (1.1) and obtained highly accurate results for both
small an large amplitudes of oscillations.

From these previous works and references cited therein, it is evident that when the exact solution of a quadratic non-
linear oscillator is unknown, perturbation techniques have to be used in an attempt to derive its approximate solution. Since
the exact solution of Eq. (1.1) when B ¼ 0 is based on Jacobi elliptic functions, we shall use elliptic functions and show that
the exact solution of the mixed parity non-linear oscillator (1.1) is given in terms of a periodic rational form Jacobi elliptic
function.

2. Exact solution

In order to obtain the exact solution of Eq. (1.1) by using Jacobian elliptic functions, we shall consider that xðtÞ is given by
the following equation:

xðtÞ ¼ a� bþ cðaþ bÞcnðxt þ /; k2Þ
1þ ccnðxt þ /; k2Þ

; ð2:1Þ

where cnðxt þ /; k2Þ is the cn Jacobian elliptic function that has a period in xt equal to 4Kðk2Þ, and Kðk2Þ is the complete
elliptic integral of the first kind for the modulus k;x is the frequency of oscillation, /; a; b, and c are unknown constant
parameters that need to be determined. Notice that we have assumed that the exact solution of Eq. (1.1) has the rational
form elliptic function (2.1), since Sarma and Rao in [14] and Mickens in [1] have derived accurate approximate periodic solu-
tions to Eq. (1.1) by using rational harmonic balance approximations. Thus, substitution of Eq. (2.1) into Equation (1.1) gives:

aA� Abþ a2B� 2abBþ b2Bþ a3e� 3a2beþ 3ab2e� b3e� 4bc2x2 þ 4bc2k2x2 þ D1 þ cnðxt þ /; k2Þ

� 3aAc � Abc þ 3a2Bc � 2abBc � b2Bc þ 3a3ce� 3a2bce� 3ab2ceþ 3b3ce� 2bcx2 þ 4bck2x2 þ 3cD1

h i
þ cnðxt þ /; k2Þ2 3aAc2 þ Abc2 þ 3a2Bc2 þ 2abBc2 � b2Bc2 þ 3a3c2eþ 3a2bc2e� 3ab2c2e� 3b3c2e

h
þ 2bc2x2 � 4bc2x2 þ 3c2D1

i
þ cnðxt þ /; k2Þ3 aAc3 þ Abc3 þ a2Bc3 þ 2abBc3 þ b2Bc3 þ a3c3eþ 3a2bc3e

h
þ3ab2c3eþ b3c3e� 4bck2x2 þ c3D1

i
¼ 0 ð2:2Þ

in which the following identities for the snðxt þ /; k2Þ and dnðxt þ /; k2Þ Jacobian elliptic functions:

snðxt þ /; k2Þ2 þ cnðxt þ /; k2Þ2 ¼ 1; dnðxt þ /; k2Þ2 þ k2snðxt þ /; k2Þ2 ¼ 1 ð2:3Þ

have been used.
Note that Eq. (2.2) hold for all time t if and only if:

aA� Abþ a2B� 2abBþ b2Bþ a3e� 3a2beþ 3ab2e� b3e� 4bc2x2 þ 4bc2k2x2 þ D1 ¼ 0; ð2:4Þ

aAc3 þ Abc3 þ a2Bc3 þ 2abBc3 þ b2Bc3 þ a3c3eþ 3a2bc3eþ 3ab2c3eþ b3c3e� 4bck2x2 þ c3D1

h i
¼ 0; ð2:5Þ

3aAc � Abc þ 3a2Bc � 2abBc � b2Bc þ 3a3ce� 3a2bce� 3ab2ceþ 3b3ce� 2bcx2 þ 4bck2x2 þ 3cD1

h i
¼ 0; ð2:6Þ

3aAc2 þ Abc2 þ 3a2Bc2 þ 2abBc2 � b2Bc2 þ 3a3c2eþ 3a2bc2e� 3ab2c2e� 3b3c2eþ 2bc2x2 � 4bc2x2 þ 3c2D1

h i
¼ 0: ð2:7Þ

Thus, we have four algebraic equations and six unknowns to say, a; b; c; k;x, and /. To determine the value of these param-
eters, we shall use the initial conditions of Eq. (1.1) that for convenience and without loss of generality, we assumed to be
given as:

xð0Þ ¼ x10; _xð0Þ ¼ 0; ð2:8Þ

then from Eq. (2.1), / ¼ 0 and

c ¼ �aþ bþ x10

aþ b� x10
: ð2:9Þ
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