FISEVIER

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

S-asymptotically ω -periodic solutions to some classes of partial evolution equations

William Dimbour a,*, Gaston M. N'Guérékata b

ARTICLE INFO

Kevwords:

S-asymptotically ω -periodic functions Exponentially stable semigroup Mild solutions

ABSTRACT

In this paper, we give some sufficient conditions for the existence and uniqueness of S-asymptotically ω -periodic (mild) solutions to some classes of partial evolution equations in Banach spaces. The main result is obtained by means of the Banach fixed point principle. © 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let $(\mathbb{X}, \|\cdot\|)$ be a Banach space. In [1], the authors studied the existence and the uniqueness of almost automorphic solutions to the class of abstract partial evolution equations of the form

$$\frac{d}{dt}[u(t)+f(t,Bu(t))] = Au(t)+g(t,Cu(t)), \quad u(0) = 0 \ t \in \mathbb{R}, \tag{1}$$

where A is the infinitesimal generator of an exponentially stable C_0 -semigroup acting on X; B, C are two densely defined closed linear operators on X, and f, g are continuous functions.

The main purpose of our paper is to study the existence of S-asymptotically ω -periodic (mild) solutions to Eq. (1) assuming that f,g are S-asymptotically ω -periodic functions and f(0,0) = 0.

S-asymptotically ω -periodic functions constitute a class of functions larger than asymptotically ω -periodic ones. The literature relative to S-asymptotically ω -periodic functions remains limited due to the novelty of the concept. Qualitative properties of such functions are discussed in [3]. There are some papers dealing with the existence of S-asymptotically ω -periodic solutions of differential equations and fractional differential equations in finite as well as infinite dimensional spaces (cf. [2–6]). Of great interest is the paper by Lizama and N'Guérékata [5] where the authors created a chart establishing a general relationship between S-asymptotically ω -periodic functions and various subspaces of $BC(\mathbb{R},\mathbb{X})$. To the best of our knowledge, the problem treated here is new and our paper can inspire studies of many evolution equations (of fractional order as well) with S-asymptotically ω -periodic solutions.

We begin the work recalling some results on S-asymptotically ω -periodic functions. Then we apply these results to our problem. Theorem 1 is the main result of this paper.

2. Preliminaries

Let \mathbb{X} be a Banach space. $BC(\mathbb{R}^+,\mathbb{X})$ denotes the space of the continuous bounded functions from \mathbb{R}^+ into \mathbb{X} ; endowed with the norm $\|f\|_{\infty} := \sup_{t \geqslant 0} \|f(t)\|$, it is a Banach space. $C_0(\mathbb{R}^+,\mathbb{X})$ denotes the space of the continuous functions from \mathbb{R} into \mathbb{X}

E-mail addresses: William.Dimbour@univ-ag.fr (W. Dimbour), Gaston.N'Guerekata@morgan.edu (G.M. N'Guérékata).

^a Laboratoire C.E.R.E.G.M.I.A., Université des Antilles et de la Guyane, Campus Fouillole, 97159 Pointe-à-Pitre, Guadeloupe (FWI), France

^b Department of Mathematics, Morgan State University, 1700 East Cold Spring Lane Baltimore, MD 21251, USA

^{*} Corresponding author.

such that $\lim_{t\to\infty} f(t) = 0$; it is a Banach subspace of $BC(\mathbb{R}^+, \mathbb{X})$. When we fix a positive number $\omega, P_{\omega}(\mathbb{X})$ denotes the space of all continuous ω -periodic functions from \mathbb{R}^+ into \mathbb{X} ; it is a Banach subspace of $BC(\mathbb{R}^+, \mathbb{X})$ under the sup norm.

When $\mathbb X$ and $\mathbb Y$ are two Banach spaces, $\mathcal L(\mathbb X,\mathbb Y)$ denotes the space of the continuous linear mappings from $\mathbb X$ into $\mathbb Y$. If $\mathbb X=\mathbb Y$, we use the notation $\mathcal L(\mathbb X)$ for $\mathcal L(\mathbb X,\mathbb X)$.

Now we consider this set

$$C_0(\mathbb{R}^+,\mathbb{X}):=\{f\in BC(\mathbb{X}): \lim_{t\to\infty}\|f(t)\|=0\}.$$

Definition 1. Let $f \in BC(\mathbb{R}^+, \mathbb{X})$ and $\omega > 0$. We say that f is asymptotically ω -periodic if f = g + h where $g \in P_{\omega}(\mathbb{X})$ and $h \in C_0(\mathbb{R}^+, \mathbb{X})$.

We denote by $AP_{\omega}(\mathbb{X})$ the set of all asymptotically ω -periodic functions from \mathbb{R}^+ to \mathbb{X} . It is a Banach space under the sup norm.

Note that we have

$$AP_{\omega}(\mathbb{X}) = P_{\omega}(\mathbb{X}) \oplus C_0(\mathbb{R}^+, \mathbb{X}).$$

Definition 2. A function $f \in BC(\mathbb{R}^+, \mathbb{X})$ is called S-asymptotically ω-periodic if there exists $\omega > 0$ such that $\lim_{t \to \infty} (f(t+\omega) - f(t)) = 0$. In this case we say that ω is an asymptotic period of f and that f is S-asymptotically ω-periodic. We will denote by $SAP_{\omega}(\mathbb{X})$, the set of all S-asymptotically ω-periodic functions from \mathbb{R}^+ to \mathbb{X} . Then we have

$$AP_{\omega}(\mathbb{X}) \subset SAP_{\omega}(\mathbb{X}).$$

The inclusion is strict. Indeed consider the function $f: \mathbb{R}^+ \to c_0$ where $c_0 = \{x = (x_n)_{n \in \mathbb{N}} : \lim_{n \to \infty} x_n = 0\}$ equipped with the norm $\|x\| = \sup_{n \in \mathbb{N}} |x(n)|$, and $\left(f(t) = \frac{2nt^2}{t^2 + n^2}\right)_{n \in \mathbb{N}}$. Then $f \in SAP_{\omega}(\mathbb{X})$ but $f \notin AP_{\omega}(\mathbb{X})$ (see [3] Example 3.1).

The following result is due to Henriquez-Pierri-Tàboas; Proposition 3.5 in [3].

Theorem 1. Endowed with the norm $\|\cdot\|_{\infty}$, $SAP_{\omega}(\mathbb{X})$ is a Banach space.

Corollary 1 (see [2], Corollary 3.10, p. 5). Let $\mathbb X$ and $\mathbb Y$ be two Banach spaces, and let $A \in \mathcal L(\mathbb X, \mathbb Y)$. Then when $f \in SAP_{\omega}(\mathbb X)$, we have $Af := [t \to Af(t)] \in SAP_{\omega}(\mathbb Y)$.

For the sequel we consider asymptotically ω -periodic functions with parameters.

Definition 3 (see [3]). A continuous function $f:[0,\infty[\times\mathbb{X}\to\mathbb{X}]$ is said to be uniformly S-asymptotically ω -periodic on bounded sets if for every bounded set $K\subset\mathbb{X}$, the set $\{f(t,x):t\geqslant 0,\ x\in K\}$ is bounded and $\lim_{t\to\infty}(f(t,x)-f(t+\omega,\ x))=0$ uniformly on $x\in K$.

Definition 4 (see [3]). A continuous function $f:[0,\infty[\times\mathbb{X}\to\mathbb{X}]$ is said to be asymptotically uniformly continuous on bounded sets if for every $\epsilon>0$ and every bounded set $K\subset\mathbb{X}$, there exist $L_{\epsilon,K}>0$ and $\delta_{\epsilon,K}>0$ such that $\|f(t,x)-f(t,y)\|<\epsilon$ for all $t\geqslant L_{\epsilon,K}$ and all $x,y\in K$ with $\|x-y\|<\delta_{\epsilon,K}$.

Theorem 2 (see [3]). Let $f:[0,\infty[\times\mathbb{X}\to\mathbb{X}]$ be a function which uniformly S-asymptotically ω -periodic on bounded sets and asymptotically uniformly continuous on bounded sets. Let $u:[0,\infty[$ be S-asymptotically ω -periodic function. Then the Nemytskii operator $\phi(\cdot):=f(\cdot,u(\cdot))$ is S-asymptotically ω -periodic function.

3. Main result

3.1. Preliminary results

Before the study of Eq. (1), we present some qualitative properties of S-asymptotically ω -periodic functions.

Proposition 1. Let $(\mathbb{X}, \|\cdot\|)$ be a Banach space over the field \mathbb{K} where $\mathbb{K} = \mathbb{R}$, or \mathbb{C} . If $a(t) \in SAP_{\omega}(\mathbb{K})$ and $f(t) \in SAP_{\omega}(\mathbb{X})$, then $a(t)f(t) \in SAP_{\omega}(\mathbb{X})$.

Proof. Since a(t) and f(t) are bounded, $\exists M_1, M_2 \in \mathbb{R}+$ such that $|a(t)| \leq M_1$ and $||f(t)|| \leq M_2, \forall t \geq 0$.

$$\begin{split} \lim_{t\to\infty}\|a(t+\omega)f(t+\omega)-a(t)f(t)\|&\leqslant \lim_{t\to\infty}\|(a(t+\omega)-a(t))f(t+\omega)\|+\lim_{t\to\infty}\|(f(t+\omega)-f(t))a(t)\|\\ &\leqslant \lim_{t\to\infty}\|(a(t+\omega)-a(t))\|M_2+\lim_{t\to\infty}\|(f(t+\omega)-f(t))\|M_1=0. \end{split}$$

Download English Version:

https://daneshyari.com/en/article/4630871

Download Persian Version:

https://daneshyari.com/article/4630871

<u>Daneshyari.com</u>