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a b s t r a c t

In the present paper, an efficient numerical method is developed for solving linear and
nonlinear Lane–Emden type equations using Legendre operational matrix of differentia-
tion. The proposed approach is different from other numerical techniques as it is based
on differentiation matrix of Legendre polynomial. Some illustrative examples are given
to demonstrate the efficiency and validity of the algorithm.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Lane–Emden type equation models many phenomena in mathematical physics and astrophysics. It is a nonlinear differ-
ential equation which describes the equilibrium density distribution in self-gravitating sphere of polytrophic isothermal gas,
has a singularity at the origin, and is of fundamental importance in the field of stellar structure, radiative cooling, and mod-
eling of clusters of galaxies. The studies of singular initial value problems modeled by second order nonlinear ordinary dif-
ferential equations (ODEs) have attracted many mathematicians and physicists. One of the equations in this category is the
following Lane–Emden type equations:

y00ðxÞ þ a
x

y0ðxÞ þ f ðx; yÞ ¼ gðxÞ; a; x P 0; ð1Þ

with initial conditions (IC)

yð0Þ ¼ a; y0ð0Þ ¼ 0; ð2Þ

where the prime denotes the differentiation with respect to x, a is constant, f(x,y) is a nonlinear function of x and y. It is well
known that an analytic solution of Lane–Emden type equation (1) is always possible [1] in the neighborhood of the singular
point x = 0 for the above initial conditions. It is named after the astrophysists Jonathan H. Lane and Robert Emden, as it was
first studied by them. Taking a = 2, f(x, y) = yn, g(x) = 0 and a = 1 in (1) and (2) respectively [2], we get

y00ðxÞ þ 2
x

y0ðxÞ þ yn ¼ 0; x P 0; ð3Þ

which has another form,

1
x2

d
dx

x2 dy
dx

� �
þ yn ¼ 0; ð4Þ

subject to IC

yð0Þ ¼ 1; y0ð0Þ ¼ 0: ð5Þ
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Classically, Eqs. (4) and (5) are known as the Lane–Emden equation. Similarly isothermal gas spheres [1] are modeled by

y0ðxÞ þ 2
x

y0ðxÞ þ eyðxÞ ¼ 0; x P 0; ð6Þ

with IC

yð0Þ ¼ 0; y0ð0Þ ¼ 0: ð7Þ

The solutions of the Lane–Emden equation for a given index n are known as polytropes of index n. In (3), the parameter n has
physical significance in the range 0 6 n 6 5 and Eq. (3) with IC (5) has analytical solutions for n = 0, 1, 5 [3] and for other
values of n, numerical solutions are sought. The series solution can be found by perturbation techniques and Adomian
decomposition methods (ADM). However, these solutions are often, convergent in restricted regions. Thus, some techniques
such as Pade’s method is required to enlarge the convergent regions [1,4,5].

A number of algorithms have been proposed to solve (1) with a = 2, f(x, y) = f(y), a function of y alone and g(x) = 0. Some
recent techniques are quasilineariziation method [6–8], a piecewise linearization technique [9] based on the piecewise lin-
earization of the Lane–Emden equation and the analytic solution of the resulting piecewise constant coefficients ordinary
differential equations, the homotopy analysis method (HAM) [10], and a variational approach using a semi-inverse method
to obtain variational principle [11] and may employ the Ritz technique to obtain approximate solutions [12–14]. Later, Singh
et al. [15], applied modified homotopy analysis method (MHAM) for the first time to obtain analytical approximate solution
and showed that MHAM solution contains the previous solution obtained by ADM and HPM. Youseffi [16], has obtained the
numerical solution of the Lane–Emden equation (1) by converting into an integral equation and then using Legendre wave-
lets, for 0 6 x 6 1. Hybrid functions has been also used by Marzban et al. [17] to find out the numerical solution of (1) for
some particular nonlinear cases in 2008.

In 2008, Dehghan and Shakeri [18] used the exponential transformation (x = et) with a = 2, f(x, y) = f(y) and g(x) = 0 to get

€yðtÞ þ _yðtÞ þ e2t f ðyðtÞÞ ¼ 0; ð8Þ

subject to the conditions

lim
t!�1

yðtÞ ¼ a; lim
t!�1

e�t _yðtÞ ¼ 0; ð9Þ

where the symbol . denotes differentiation with respect to t and then applied variational iteration method (VIM) for the
approximate solution. Pranand et al. [19,20] applied two different methods like rational Legendre pseudospectral approach
and Hermite function collocation technique respectively to obtain an approximate solution. More recently, some more meth-
ods are also used to obtain the solution of Lane–Emden equations using perturbation techniques [21,22], optimal homotopy
method [23] and Lagurre function collocation method [24].

The aim of the present paper is to propose a reliable numerical technique for solving linear and nonlinear Lane–Emden
equation (1) using Legendre operational matrix of differentiation Saadatmandi and Dehghan [25]. Some special cases of the
problem are solved to show its validity and efficiency as comparison with other existing numerical methods. The approxi-
mate solution obtained by the proposed method shows its superiority on the other existing numerical solutions [17–20].

2. Legendre polynomials and its operational matrix of Differentiation

The Legendre polynomials of order m defined by Lm(t) are defined on the interval [�1,1] and can be determined with the
aid of the following recurrence formula:

L0ðtÞ ¼ 1; L1ðtÞ ¼ t Lmþ1ðtÞ ¼
2mþ 1
mþ 1

tLm�1ðtÞ �
m

mþ 1
Lm�1ðtÞ; m ¼ 1;2; . . . ð10Þ

These polynomials on the interval t e [0,1] so called shifted Legendre polynomials can be defined by introducing the change
of variable t = 2x � 1. Let the shifted Legendre polynomials Lm(2x � 1) be denoted by Pm(x). Then Pm(x) can be obtained as
follows:

Pmþ1ðxÞ ¼
ð2mþ 1Þð2x� 1Þ

mþ 1
PmðxÞ �

m
mþ 1

Pm�1ðxÞ; m ¼ 1;2; . . . ð11Þ

where P0(x) = 1 and P1(x) = 2x � 1. The analytic form of the shifted Legendre polynomials Pm(x) of degree m are given by:

PmðxÞ ¼
Xm

i¼0

ð�1Þmþi ðmþ iÞ!xi

ðm� 1Þði!Þ2
: ð12Þ

Any function, y(x) e L2[0,1], can be approximated as a sum of shifted Legendre polynomials as:

yðxÞ ¼
X1
i¼0

ciPiðxÞ; ð13Þ

where
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