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In this paper, using the Newton’s formula of Lagrange interpolation, we present a new
proof of the anisotropic error bounds for Lagrange interpolation of any order on the
triangle, rectangle, tetrahedron and cube in a unified way.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

It is known that the polynomial interpolations are the foundations of construction the finite elements and the interpola-
tion error estimates play a key role in deriving a priori error estimates of the finite element methods. The main strategy of
the traditional interpolation theory is fairly standard, namely, first deriving the estimate on the reference element and then
an application of a coordinate transformation between a general element and the reference element, see [11,7] and refer-
ences therein. For the triangular and rectangular elements in two dimension and the tetrahedral and cubic elements in three
dimension, the mapping between a general element and the reference element is an affine mapping, so in the following we
call these elements affine elements. The classical error estimates of the polynomial interpolation on the affine elements need
the regular [11] or nondegenerate [7] condition, i.e., the ratio of the diameters of the element and the biggest ball contained
in the element is uniformly bounded. This condition restricts the applications of the finite elements. It is found (see e.g.,
[6,15]) a long time ago that this condition is not necessary for some interpolation error estimates. We call the element does
not satisfy the regular condition the anisotropic element. Recently, the research of the anisotropic elements is rapidly devel-
oped, and there are several different methods dealing with them. Apel and Dobrowolski [3], Apel [4] gave one anisotropic
form of the interpolation error on the reference element. They got the anisotropic interpolation error estimates on a general
element for some Lagrange and Hermite elements under the maximal angle and coordinate system conditions. The corre-
sponding appeared derivatives are along the coordinate directions. Chen et al. [9,10] extend this method by presenting a sim-
ple anisotropic criterion on the reference element and analyzed some nonconforming elements. Acosta [1], Acosta and Duran
[2], Duran [12,13] got the anisotropic error estimates for low order Lagrange and R-T interpolations by using of the average
property of the interpolation and the appeared derivatives under consideration are along the directions of the element
boundary. The different forms of the anisotropic error estimate of the linear triangular Lagrange interpolation are obtained
by the decomposition of the transformation matrix between a general element and the reference element in [14] and by Tay-
lor’s expansion in [8].

In this paper, the anisotropic interpolation error estimates of Lagrange interpolations with any order on the affine elements
(triangle, rectangle, cube and tetrahedron) are derived in a unified new way. On the reference element the anisotropic error

0096-3003/$ - see front matter � 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2011.04.015

q This work is supported by NSFC (11071226 and 10590353).
⇑ Corresponding author.

E-mail addresses: shchchen@zzu.edu.cn (S. Chen), zhengyanjun@zzu.edu.cn (Y. Zheng), maosp@lsec.cc.ac.cn (S. Mao).

Applied Mathematics and Computation 217 (2011) 9313–9321

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc

http://dx.doi.org/10.1016/j.amc.2011.04.015
mailto:shchchen@zzu.edu.cn
mailto:zhengyanjun@zzu.edu.cn
mailto:maosp@lsec.cc.ac.cn
http://dx.doi.org/10.1016/j.amc.2011.04.015
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


estimates of the interpolations are proved by Newton’s formula of the Lagrange interpolation and a special property of the
divided difference, which are different from [4]. The appeared derivatives are along the directions of the element boundary
(as in [2,13]) and independent length scales in different directions are extracted (as in [4]). No geometry condition of the ele-
ment is needed for rectangular and cubic elements. The sine of the biggest internal angle of the element and the regular vertex
property factor [2] appear explicitly in the triangular and the tetrahedral elements, respectively, then standard arguments will
lead to the estimates that depend on the biggest internal angle of the element and the regular vertex property factor.

2. Lagrange interpolation remainder term on reference elements

2.1. The property of the divided difference

Let x0 < x1 < � � � < xm be a uniform partition, d = xi+1 � xi, 0 6 i 6m � 1.
It is easy to get the following result by inductive method.
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Let f[x0, . . . ,xm] be the usual divided difference (see [5]), then we get the following lemma.

Lemma 2.2. Suppose f(x) is sufficiently smooth, then:
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Proof. We use the inductive method.
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f x0; . . . ;xmþ1½ � ¼ ðf x1; � � � ;xmþ1½ � � f x0; . . . ;xm½ �Þ=ðxmþ1 � x0Þ

¼ 1
ðmþ 1Þd

Z x2

x1

dt1

Z t1þd

t1

dt2 � � �
Z tm�1þd

tm�1

f ðmÞðtmÞdtm �
Z x1

x0

dt1

Z t1þd

t1

dt2 � � �
Z tm�1þd

tm�1

f ðmÞðtmÞdtm

" #,
ðm!dmÞ

¼ð2:1Þ 1

ðmþ 1Þ!dmþ1

Z x1

x0

dt1

Z t1þd

t1

dt2 � � �
Z tm�1þd

tm�1

f ðmÞðtm þ dÞ � f ðmÞðtmÞ
� �

dtm

¼ 1

ðmþ 1Þ!dmþ1

Z x1

x0

dt1

Z t1þd

t1

dt2 � � �
Z tm�1þd

tm�1

dtm

Z tmþd

tm

f ðmþ1Þðtmþ1Þdtmþ1:

This completes the proof. h

Remark 1. Lemma 2.2 is similar to Hermite–Gennochi Theorem 5, Theorem 3.3.
Using the inductive method again, we can get:

Lemma 2.3. For all 0 6 l 6m, f[x0, . . . , xm] can be expressed by

f ½x0; . . . ; xm� ¼
Xm�l

i¼0

cif ½xi; . . . ; xiþl�; ð2:3Þ

where ci (0 6 i 6m � l) is only dependent on l and d.
The interpolation polynomial If(x) of f(x) satisfying If(xi) = f(xi)(0 6 i 6m) can be expressed in the following two forms, where

(2.4) is called Lagrange’s formula and (2.5) is called Newton’s formula (see [5]):
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where pi(x) (0 6 i 6m) 2 Pm (the polynomial space of degree less or equal to m) and pi(xj) = dij, 0 6 i, j 6m:
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