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a b s t r a c t

A new series method is provided for continuous-time autonomous dynamical systems,
which can find exact orbits as opposed to approximate ones. The method can reduce the
connecting orbit problem as a boundary value problem in an infinite time domain to the
initial value problem. It consists of transforming time to the logarithmic scale, substituting
a power series around each fixed point of interest for each of the unknown functions into
the system, and equating the corresponding coefficients. When solving for the power series
coefficients, additional parameters are used in order to find the intersections of the unsta-
ble manifold and the stable manifold of the equilibria. This paper demonstrates how the
new method allows to obtain heteroclinic and homoclinic orbits in some well-known
cases, such as Nagumo system, stretch-twist-fold flow or mathematical pendulum.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The research of dynamical systems has attracted attention of many scholars during the past decades. Nevertheless, it still
remains an active field today, with many interesting open questions. From a dynamical system point of view, we are greatly
interested in the long-term behavior of solutions of differential equations. In particular, it is exciting how to find homoclinic
or heteroclinic orbits. Homoclinic orbits often arise as the limiting case of periodic solutions, while heteroclinic ones repre-
sent traveling wave solutions of parabolic partial differential equations [1]. More importantly, the existence of homoclinic or
heteroclinic orbits is critical for applying the S̆ilnikov theorem, which provides a very useful tool for proving chaos in con-
tinuous-time autonomous systems [2–4].

Though we can find homoclinic or heteroclinic orbits by the Hamilton function for a Hamiltonian system, it is very dif-
ficult to find these orbits for a system that is not Hamiltonian, especially as a function of time t. In more recent years, a great
deal of research has been invested in the proof of existence and computation of homoclinic or heteroclinic orbits [5–16]. In
order to obtain numerical or analytical solutions, the methods include numerical computation [1,8–11] and applying series
[12–16]. The former was developed into many variational methods, such as arclength parameterization method [1] and Her-
mite spectral method [11]. A series method was proposed by Zhou et al. to find exact orbits [12]. The method has since been
applied and improved [14–16].

In this paper, we introduce a new series method for continuous-time autonomous dynamical systems, which can find ex-
act orbits as opposed to approximate ones. The basis of the approach is to find the intersections of the unstable manifold and
the stable manifold of the equilibria. By using the logarithmic transformation of time, the connecting orbit problem as a
boundary value problem in an infinite time domain is reduced to the initial value problem. The solutions are formally ex-
pressed as power series expansions, and the coefficients are determined in virtue of the undetermined coefficient method.
Finally, the method is successfully applied to find the homoclinic or heteroclinic orbits in some systems.
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This paper is organized as follows. Section 2 investigates the new series method in detail. Section 3 describes how to
apply the new method to find the exact heteroclinic orbits in the stretch-twist-fold flow. Section 4 describes how to ap-
ply the method to find the exact heteroclinic orbit in the Nagumo system. Section 5 illustrates how to deal with the
system whose right-hand side is of the non-polynomial form. We also discuss how to deal with homoclinic orbits in
Section 6.

2. Scaling logarithm change series method

Consider the following system

dx
dt
¼ f ðx; kÞ; t 2 R; ð2:1Þ

where x 2 Rn, k 2 Rm, and f : Rn � Rm ? Rn is sufficiently smooth. For a given k, if there exists a non-constant solution x = x(t,k)
of (2.1) such that

Pþ ¼ lim
t!þ1

xðt; kÞ; P� ¼ lim
t!�1

xðt; kÞ; f ðP�; kÞ ¼ 0;

then x = x(t,k) is called a connecting orbit between the equilibria P+ and P�. If P+ = P�, the orbit x = x(t,k) is called a homoclinic
orbit; otherwise, it is called a heteroclinic orbit. Wu

þ Wu
�

� �
denotes the unstable manifold of P+(P�), and Ws

þ Ws
�

� �
denotes the

stable manifold of P+ (P�), respectively.
The paper provides a new series method, named scaling logarithm change series (SLS) method, to find homoclinic or het-

eroclinic orbits in continuous-time autonomous dynamical systems. The basis of the approach is to find the intersections of
the unstable manifold Wu

� and the stable manifold Ws
þ of the equilibria. The main steps are described as follows. For sim-

plicity, we will mainly illustrate how to find homoclinic or heteroclinic orbits for polynomial systems. However, as shown
in Section 5, the method is also applicable to non-polynomial analytic systems.

Step 1. For t > 0, introduce the following logarithmic scale in (2.1):

t ¼ � 1
T1

lnðsÞ; ð2:2Þ

where T1 is an undetermined positive real constant, called scaling factor. Obviously, s ? +0 as t ? +1. Hence, t > 0 is trans-
formed into 0 < s < 1.

Using the transformation (2.2) and (2.1) becomes

�T1s
dx
ds
¼ f ðxÞ: ð2:3Þ

Step 2. We assume that system (2.3) has a solution of the form

xiðsÞ ¼ aðiÞ0 þ
X1
k¼1

aðiÞk sk ði ¼ 1;2; . . . ; nÞ; ð2:4Þ

where að1Þ0 ; að2Þ0 ; . . . ; aðnÞ0

� �
¼ Pþ, and aðiÞk k P 1; i ¼ 1;2; . . . ;nð Þ are undetermined coefficients.

Substituting (2.4) into (2.3) gives

�T1s
X1
k¼1

kaðiÞk sk�1 ¼ fi að1Þ0 þ
X1
k¼1

að1Þk sk; að2Þ0 þ
X1
k¼1

að2Þk sk; . . . ; aðnÞ0 þ
X1
k¼1

aðnÞk sk

 !
; i ¼ 1;2; . . . ;n: ð2:5Þ

Step 3. Comparing the coefficients of s1 in (2.5), we have

ðT1I þ JðPþÞÞ

að1Þ1

að2Þ1

..

.

aðnÞ1

0
BBBBB@

1
CCCCCA ¼ 0; ð2:6Þ

where J(P+) is the Jacobian of system (2.1) evaluated at the equilibrium P+.
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