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a b s t r a c t

This paper presents a new dynamic non-uniform segmentation method for the first-order polynomial
function evaluation. The proposed method can evaluate the elementary functions (e.g. log, exp, sin,
cos, tan, etc.) and combinations of these functions by an optimized linear approximation with the fewest
non-uniform segments. Compared with the previous evaluation method based on the static bit-width
analysis, the proposed method is mainly based on a dynamic bit-width analysis and capable of reducing
the number of segments, which in turn can significantly reduce the memory size occupied in hardware.
The proposed dynamic method can evaluate the function to satisfy accuracy by the linear approximation
in which the input, coefficients, and intermediate values are rounded to fewer bit-width, which cannot be
achieved by previous static non-uniform segmentation methods. The hardware performance evaluation
results on FPGA show that the proposed method consumes about 66% fewer hardware resources, 56% less
actual memory usage, and performs 32% shorter delay on average in comparison with the non-uniform
segmentation method based on static bit-width analysis.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Elementary functions, such as logarithmic, exponential, trigono-
metric, reciprocal, and square root, and combinations of these
functions (compound functions) are essential in digital signal pro-
cessing, communication system, scientific computing and so on.
The computation of the elementary arithmetic functions is ex-
pected to be quick and accurate. Muller [1] presents both software
and hardware-oriented algorithms to compute elementary func-
tions. The piecewise polynomial approximation algorithm is an
attractive method because any elementary or compound function
can be evaluated by a set of simple linear or higher-order polyno-
mial approximations. Based on the polynomial approximation
algorithm, the elementary function evaluation in hardware [2–9]
has been realized on a field-programmable gate array (FPGA).

The piecewise linear approximation algorithm can evaluate ele-
mentary functions by a set of simple linear approximations, in par-
ticular, when the objective is to use these elementary functions to
implement the high-speed and low-power applications. On the
other hand, the high-order polynomial approximation can be ap-
plied to reduce the number of segments, and therefore the memory
size can be reduced in hardware. However, by the high-order poly-
nomial method, more multipliers and adders are required, which

leads to a longer delay and a larger area in hardware. In order to
achieve a required accuracy, the interval of the function can be
split into a set of segments with the same size. Such an approach
is called uniform segmentation method [2–7,9]. However, the
shortcoming of this approach is that numerous segments make
the size of the look-up table become too large to be actually prac-
tical. By way of contrast, a more effective approach is to determine
the segment that has the largest size while maintaining the speci-
fied approximation accuracy. Such an approach in which segments
have different width is called a non-uniform segmentation method
[8,10,11].

Main challenges for designing a first-order polynomial structure
based on the non-uniform segmentation method stem from the
following three aspects. The first challenge is to determine the
minimum number of the bit-width for internal signals in the
fixed-point data path. The most commonly used approach for bit-
width optimization is a dynamic method in which the bit-width of
each signal is gradually adjusted to a point where all inputs meet
the precision requirement [12–15]. In [16], a static bit-width opti-
mization approach (MiniBit) is proposed, which is adopted in the
static non-uniform segmentation methods [8] to compute the
bit-width for each signal in mathematical manner. The second
challenge is to select the best scheme to partition the interval of
the function to the fewest number of segments, which can produce
a minimum look-up table size for storing the coefficients and a rel-
ative simple segment index encoder (SIE). In [8], the domain of the
function is partitioned at the point where the maximum absolute
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error occurs. The third challenge is to compute the best-fit linear
approximation with finite precision internal signals in each seg-
ment so that a faithful rounding can be guaranteed for accuracy.

In this paper, we propose a dynamic non-uniform segmentation
method for the linear approximation function evaluation. The main
advantages of this method are:

� it can reduce the uniform fractional bit-width (UFB) determined
by MiniBit method by a dynamic bit-width analysis;
� it can limit the number of non-uniform segments to minimum

by a binary search partition scheme (BSPS) [17];
� it can compute the best-fit optimized linear approximation in

which internal signals are rounded to finite precision in each
segment.

This paper is organized as follows: Section 2 presents the nota-
tions and analyzes the minimum maximum (minimax) linear
approximation in one segment. In Section 3, we present the pro-
posed dynamic non-uniform segmentation method for the linear
approximation function evaluation. Section 4 gives the hardware
implementation for function evaluation. In Section 5, we give
experimental and comparison results. Section 6 gives conclusions.

2. Minimax polynomial approximation

2.1. Notations

In this paper, we deal with the linear approximation evaluation
of the function f(x) with its input and output in the binary fixed-
point (BXP) format. The input value of x is a m-bit BXP number
in the domain [a, b]; the function evaluation result is a n-bit BXP
number. In order to achieve a specified accuracy, the interval of x
is typically split into a set of subintervals, [ai, bi], where
a 6 ai < bi 6 b, and i is the segment index. According to [1], in each
subinterval, there are many straight lines, defined as P1 that can
evaluate the function f(x), and of which only p⁄(x) is the best-fit lin-
ear approximation, c0ix + c1i, for achieving the minimax absolute
error:

kf ðxÞ � p�ðxÞk1 ¼ min
pðxÞ2P1

max
ai6x6bi

jf ðxÞ � pðxÞj ð1Þ

With the piecewise linear approximation, errors are produced
in three ways. The first one is the maximum linear approximation
error, jeaj, resulted from the absolute value of the difference be-
tween the function f(x) and its minimax linear approximation:

jeaj ¼ max
ai6x<bi

jf ðxÞ � ðc0i � xþ c1iÞj; ð2Þ

where x, c0i, c1i and Di = c0i � x represent infinite precision inputs,
coefficients and intermediate values respectively.

The second one is the absolute quantization error, jeqj, as shown
in (3), produced by the finite precision of rounded inputs, x0, coef-
ficients, c00i and c01i, and intermediate values, D0i, in the hardware
implementation.

jeqj ¼ ðc0i � xþ c1iÞ � D0i þ c01i

� ��� �� ð3Þ

The third one is the absolute final output rounding error, jerj, whose
maximum value is 0.5 unit in the last place (ulp). In order to obtain
a n-bit accuracy, the following condition must be satisfied:

jetj ¼ jeaj þ jeqj þ jer j 6 2�n ð4Þ

Table 1 summarizes the symbols and notations used in this
paper.

2.2. Minimax error analysis in one segment

In each segment, the best-fit straight line can be found by
Chebyshev theorem [1] which gives a characterization of the mini-
max approximations to a function.

Chebyshev Theorem: p⁄ is the minimax degree-n approxima-
tion to f on [ai, bi], if and only if there are at least n + 2 values,
ai 6 x0 < x1 < . . . < xn < xn+1 6 bi, such that:

p�ðxiÞ � f ðxiÞ ¼ ð�1Þi½p�ðx0Þ � f ðx0Þ� ¼ �kf � p�k1 ð5Þ

Based on Chebyshev theorem, there are at least three values, x0,
x1 and x2, where the minimax approximation error, ea, is kept bal-
anceable and reached with alternate signs. The convexity of the
function f(x) implies that the differences between f(x) and p⁄(x)
at starting (x0 = ai), ending (x2 = bi) and tangent (f0(x1) = c0i) points
are equal, and represent the minimax error. Thus, we obtain:

f ðaiÞ � ðc0i � ai þ c1iÞ ¼ �ea

f ðx1Þ � ðc0i � x1 þ c1iÞ ¼ ea

f ðbiÞ � ðc0i � bi þ c1iÞ ¼ �ea

f ðx1Þ0 � c0i ¼ 0

8>>><
>>>:

ð6Þ

According to (6), the coefficients c0i and c1i, the value x1 and the
minimax error ea are computed so that the best-fit minimax linear
approximation in [ai, bi] is determined. Since, the infinite precision
input, coefficients and intermediate values have to be rounded to
the finite precision x0; c00i; c

0
1i and D0i in hardware. As a result, a quan-

tization error, eq, is produced, and the best-fit linear approximation
line obtained by Chebyshev theorem is moved to p⁄(x0) as shown in
(7), which is not a minimax linear approximation anymore, and the
minimax approximation errors are not balanceable.

Di ¼ c00i � x0

p�ðx0Þ ¼ D0i þ c01i

ð7Þ

In order to redetermine a new best-fit linear approximation, p�r ðx0Þ,
with these rounded values of x0; c00i; c

0
1i and D0i, we keep the value of

c00i and adjust the value of c01i to c001i according to (8):

c001i ¼
maxðf ðxÞ � D0iÞ þminðf ðxÞ � D0iÞ

2
ð8Þ

Thus, a new best-fit linear approximation p�r ðx0Þ is obtained, which
leads to reoccupy an optimized approximate error, e0a:

p�r ðx0Þ ¼ D0i þ c001i ð9Þ

Algorithm 1. Determination of coefficients c00i and c001i in One
Segment

Input: (1) Function, f(x); (2) one segment, [ai, bi]; (3) precision
of c00i in bits, q; (4) precision of c01i and D0iðx0Þ in bits, p; (5)
precision of x in f(x), m.

Output: 1) Best-fit coefficients c00i and c001i ; 2) Minmax error,
e0a
�� ��

1: [c0i, c1i] Chebyshev(f(x), [ai, bi])
2: c00i  roundðc0i; qÞ
3: c01i  roundðc1i; pÞ
4: D0iðx0Þ ¼ round c00i � x0; p

� �
5: max max

fxi¼ai to bi steps 2�mg
f ðxiÞ � D0iðroundðxi; qÞÞ
� �

6: min min
fxi¼ai to bi steps 2�mg

f ðxiÞ � D0iðroundðxi; qÞÞ
� �

7: c001i  maxþmin
2

8: e0a
�� �� max�min

2
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