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a b s t r a c t

A system of parabolic partial differential equations describes the interaction of three pop-
ulations, modeling a dynamic competition/cooperation scenario. More precisely, two pop-
ulations are always competing with each other, but the third population can switch the
mode of alliance with the other two populations between cooperation and competition.
The control is a function measuring the strength and nature of the alliance and the goal
is to maximize the population with the swinging alliance while keeping the other two pop-
ulations close to each other and minimizing the cost of the alliance action. Various scenar-
ios are illustrated with numerical results.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Balancing the interests of the two competing populations with an alliance involving the third population is modeled by a
parabolic system. We consider optimal control of a nonlinear system of parabolic partial differential equations with Dirichlet
boundary conditions in a bounded, space–time domain Q = X � (0,T), X � Rn. Solutions of the system represent populations
of three species. One of the populations can switch its alliance between cooperation and competition with the other two
populations. The other two populations always compete with each other. The control is the function a, measuring the
strength of interaction; the sign of a tells whether the interaction is competitive or cooperative. The control set is defined as

U � fa 2 L1ðQÞ : jaðx; tÞj 6 M a:e: in Qg;

where M > 0. Given a control a 2 U, the corresponding state variables, u1(x, t), u2(x, t) and u3(x, t) satisfy the state system:

Lkuk ¼ Fkðu1;u2;u3;aÞ þ fk;

for k ¼ 1;2;3:
ð1Þ

ICs:

ukðx;0Þ ¼ uk0ðxÞ for x 2 X; k ¼ 1;2;3: ð2Þ

BCs:

uk ¼ 0 on @X� ð0; TÞ; k ¼ 1;2;3; ð3Þ

where

Lkuk � ðukÞt �
Xn

i;j¼1

ak
ijðukÞxi

� �
xj

þ
Xn

i¼1

ðbiÞkðukÞxi
þ ckuk ð4Þ
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and

F1ðu1;u2;u3;aÞ ¼ �u1
R

X
u2

1þu2
dxþ au1

R
X

u3
1þu3

dx;

F2ðu1;u2;u3;aÞ ¼ �u2
R

X
u1

1þu1
dx� au2

R
X

u3
1þu3

dx;

F3ðu1;u2;u3;aÞ ¼ au3
R

X
u1

1þu1
dx� au3

R
X

u2
1þu2

dx:

ð5Þ

The autonomous sources f 0i s represent either immigration or emigration. The first and second terms on the right hand of each
equation represent the non-local interaction between two populations. For example, the terms in the right hand side of the
u1 PDE represent the non-local interaction between populations 1 and 2 and populations 1 and 3, respectively. The main
reason why the interaction terms have the form,

R
X

ui
1þui

dx, is to bound the states. Indeed, if the interaction term were simply
of the form,

R
X uidx, and the source terms are positive then the solutions may blow up at finite time, since quadratic growth

terms may cause such behavior. Interactions of this form have been considered in combat modeling involving coalitions [10].
The objective functional, defined from the perspective of the opportunistic population 3 is:

JðaÞ ¼ 1
2

Z
Q

Ku2
3 � Lðu2 � u1Þ2 �Ma2

h i
dxdt; ð6Þ

where K, L and M are positive weighting constants, which balance the importance of the three terms. The second term in the
integrand reflects the potential risk incurred by population 3 from the disparity between populations 1 and 2. The last term
reflects the cost of switching allegiance. The goal is to maximize the size of population 3 while keeping the sizes of the other
two populations close to each other and minimizing cost.

We seek to maximize the functional over the admissible class of control space such that

Jða�Þ ¼max
a2U

JðaÞ: ð7Þ

For work on related problems with coalitions and competitions, see [1,9,8,6,4,15,10]. For background on control of PDEs,
see the fundamental book by Lions [13] and the book by Li and Yong [12].

In Section 2, we prove the existence of solutions to the state system and a priori estimates for the state solutions. In Sec-
tion 3, we prove the existence of an optimal control. The control-to-state map is differentiated to obtain the sensitivity sys-
tem. Using the sensitivity system, we derive the optimality system by differentiating the objective functional with respect to
the control in the fourth section. The optimal control is explicitly expressed in terms of the solutions to the optimality sys-
tem, which consists of the state system coupled with an adjoint system. In Section 5, we prove the uniqueness of the optimal
control. Finally, we show numerical results using some simple examples, with spatially independent control functions, a(t),
and with more general control functions, a(x, t), respectively.

2. Assumptions

We make the following assumptions:

uk0ðxÞ 2 L1ðXÞ; for k ¼ 1;2;3; ð8Þ
ak

ij 2 C1ðQÞ; ak
ij ¼ ak

ji for k ¼ 1;2;3; i; j ¼ 1;2;3; . . . ;n; ð9Þ

bk
i 2 C1ðQÞ; ck

i 2 CðQÞ for k ¼ 1;2;3; i ¼ 1;2;3; . . . ;n; ð10ÞXn

i;j¼1

ak
ijðx; tÞninj P hn2

i for k ¼ 1;2;3; where h > 0; for all ðx; tÞ 2 Q ; n 2 Rn; ð11Þ

fk 2 L1ðQÞ; and f kðx; tÞP 0 for all ðx; tÞ 2 Q for k ¼ 1;2;3: ð12Þ
The underlying state space for system (1)–(5) is V ¼ L2ð0; T; H1

0ðXÞÞ.

Definition 1. For each t 2 (0,T), we define the bilinear form in H1(X):

akðt;w;/Þ ¼
Z

X

Xn

i;j¼1

ak
ijwxi

/xj
dxþ

Z
X

Xn

i¼1

ðbiÞkwxi
/dxþ

Z
X

ckw/dx

for k = 1, 2, 3.

Definition 2. (u1, u2, u3) in V3 is a solution of system (1)–(5) provided

ðiÞ ðu1Þt; ðu2Þt; ðu3Þt 2 L2ð0; T; H�1ðXÞÞ;
ðiiÞ

R T
0 ðhðukÞt;/ki þ akðt; uk;/kÞÞdt ¼

R
Q ðFkðu1; u2; u3;aÞ þ fkÞ/kdxdt;

for all /k 2 L2ð0; T; H1
0ðXÞÞ and k ¼ 1;2;3;

ðiiiÞ u1ðx;0Þ ¼ u10ðxÞ; u2ðx;0Þ ¼ u20ðxÞ; u3ðx; 0Þ ¼ u30ðxÞ for x 2 X:

where h(uk)t,/ki denotes duality action between H�1(X) and H1
0ðXÞ.
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