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a b s t r a c t

It is shown that the three nonlinear dynamic Euler ordinary differential equations (ODEs),
concerning the motion of a rigid body free to rotate about a fixed point, are reduced, by
means of a subsidiary function which is to be determined, to three Abel equations of the
second kind of the normal form. Based on a recently developed mathematical construction
concerning exact analytic solutions of the Abel nonlinear ODEs of the second kind, we per-
form a new mathematical solution for the classical dynamic Euler nonlinear ODEs.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

There are many studies [1–4] on the motion of an asymmetric rigid body free to rotate about a fixed point. The so-called
three dynamic and three kinematic Euler equations, governing the above mentioned problem, were mainly applied to self-
excited gyros [5–7] and they were numerically or analytically solved for special cases of motion, depending on the kind of
geometry of the body as well as the external loading. Successful attempts were made by Panayotounakos and Theocaris [8,9]
in solving both systems of dynamic and kinematic Euler’s equations by making use of several ad hoc assumptions concerning
the kind of loading. Finally, during the forty last years several successive efforts were made by many researchers in analyt-
ically solving the so-called generalized Euler dynamic equations of motion [10–13]. However, the obtained solutions concern
special symmetries and loadings.

This work deals with the possibility of constructing exact analytic solutions concerning the dynamic Euler equations of
motion. We prove that the above mentioned Euler’s nonlinear first-order differential system can be reduced, by means of a
subsidiary function that is to be determined, to three nonlinear Abel equations of the second kind of the normal form. It is
well-known that this type of equation admits exact analytic solutions in terms of known (tabulated) functions only for spe-
cial cases depending on the form of their second free members [14]. Based on a recently developed mathematical construc-
tion [15,16] that performs exact analytic solutions of the previously mentioned Abel equation in the general case of an
arbitrary smooth second member, we succeed in solving analytically the prescribed problem in the most general case of
geometry and loading. Finally three applications have been made.

2. Preliminaries – Notation

Consider the motion of an arbitrary rigid body, free to rotate about a fixed point O. Let us denote by Ox1y1z1 the
space-fixed coordinate system, while by Oxyz the body-fixed coordinate system. The state motion is a relation with an
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instantaneous angular velocity x(t) = (xx,xy,xz) with respect to the Oxyz-system; t denotes the time. Let also Jx, Jy, Jz denote
the principal moments of inertia of the body, corresponding to the x, y, z-axes, respectively, with an arbitrary sequence
Jx < Jy < Jz. The body is then asymmetric and in the absence of friction the external forces reduce to a simple force R and a
couple M through O. Thus, the vector M is known and the motion of the body can be obtained by the angular momentum
theorem.

On the basis of the previous assumptions we may derive the well-known equations of motion of a rigid body free to rotate
about a fixed point (Euler’s dynamic equations of motion) in terms of the projections on the principal axes of inertia of the
body through that point, namely:

Jxx0xt
� a1xyxz ¼ MxðtÞ; Jyx0yt

� a2xxxz ¼ MyðtÞ; Jzx0zt
� a3xxxy ¼ MzðtÞ; ð1Þ

where

a1 ¼ Jy � Jz < 0; a2 ¼ Jz � Jx > 0; a3 ¼ Jx � Jy < 0; ð2Þ

while the symbol y0x ¼
dy
dx ; y00xx ¼

d2y
dx2 is used for the total derivatives. Because the moment-vector M is known, the solution of

the system Eq. (1) provides the resultants xx, xy, xz of the instantaneous angular velocity x.
In what follows, based on a recently developed mathematical construction [15,16], we will construct a new mathematical

solution of the dynamic equations of motion Eq. (1) in the general case when Mx, My and Mz are arbitrary smooth functions of
time t.

3. A new mathematical construction

Let us now consider the Abel ODE of the first kind of the normal form

yy0x � y ¼ f ðxÞ; ð3Þ

where f is an arbitrary smooth function.
According to Refs. [15,16], the solution of this equation is given as follows:

yðxÞ ¼ 1
2
ðxþ 2kÞ NðxÞ þ 1

3

� �
;

N0x ¼
4ðGþ 2f Þ

ðxþ 2kÞ2 NðxÞ þ 4
3

h i ; ð4Þ

where G(x) is a subsidiary function being defined below, k is a parameter and NðxÞ is one of the roots of the cubic equation of
Cardano’s form

N3ðxÞ þ pNðxÞ þ q ¼ 0: ð5Þ

That is to say, NðxÞ is given by one of the following six functions:

Case a: Q < 0, (p < 0)

N1ðxÞ ¼ 2
ffiffiffiffiffiffiffiffi
� p

3

r
cos

/
3
; N2ðxÞ ¼ �2

ffiffiffiffiffiffiffiffi
� p

3

r
cos

/� p
3

; N3ðxÞ ¼ �2
ffiffiffiffiffiffiffiffi
� p

3

r
cos

/þ p
3

; ð6Þ

where

cos / ¼ � q

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� p

3

� �3
r ; 0 < / < p:

Case b: Q > 0

NðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q

2
þ

ffiffiffiffi
Q

p
3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q

2
�

ffiffiffiffi
Q

p
3

r
: ð7Þ

Case c: Q = 0

N1ðxÞ ¼ 2
ffiffiffiffiffiffiffiffi
� q

2
3

r
; N2ðxÞ ¼ N3ðxÞ ¼ �

ffiffiffiffiffiffiffiffi
� q

2
3

r
: ð8Þ

In these expressions Q(x), p(x) and q(x) are given by

QðxÞ ¼ p
3

� �3
þ q

2

� �2
; p ¼ � a2

3
þ b; q ¼ 2

a
3

� �3
� ab

3
þ c; ð9Þ
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