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a b s t r a c t

The paper deals with the numerical solution of inverse Sturm–Liouville problems with
unknown potential symmetric over the interval [0,p]. The proposed method is based on
the use of a family of Boundary Value Methods, obtained as a generalization of the Nume-
rov scheme, aimed to the computation of an approximation of the potential belonging to a
suitable function space of finite dimension. The accuracy and stability properties of the
resulting procedure for particular choices of such function space are investigated. The
reported numerical experiments put into evidence the competitiveness of the new method.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Inverse Sturm–Liouville problems (SLPs) consist of recovering the potential q(x) 2 L2[0,p] from

� y00 þ qðxÞy ¼ ky; x 2 ½0;p�; ð1Þ
a1yð0Þ � a2y0ð0Þ ¼ 0; ja1j þ ja2j – 0; ð2Þ
b1yðpÞ � b2y0ðpÞ ¼ 0; jb1j þ jb2j – 0; ð3Þ

and the knowledge of suitable spectral data. They play an important role in several areas such as geophysics, engineering and
mathematical-physics. The research concerning the development of numerical techniques for the approximation of their
solution represents therefore a very active and interesting field of investigation.

The existence and uniqueness of the solution of an inverse SLP has been proved for several formulations of it among
which we quote:

� The two-spectrum problem characterized by the knowledge of two sets of eigenvalues fkðjÞk g
1
k¼1, j = 1, 2, corresponding to

two SLPs sharing the first boundary condition (2) (BC in the sequel) and differing for the second one (3), [1];
� The spectral function data problem where the input consists of one spectrum fkkg1k¼1 and the ratios fkykk

2
2=y2

kð0Þg
1
k¼1 or

fkykk
2
2=ðy0kð0ÞÞ

2g1k¼1 in the case a2 – 0 or a2 = 0, respectively. Here yk denotes the eigenfunction corresponding to kk, [2];
� The endpoint data problem occurring when the spectrum of the SLP subject to Dirichlet BCs is known together with the

terminal velocities jk ¼ logðjy0kðpÞj=jy0kð0ÞjÞ; k ¼ 1;2; . . ., [3];
� The symmetric problem for which a potential q satisfying

qðxÞ ¼ qðp� xÞ; ð4Þ

for all x 2 [0,p], has to be reconstructed from the knowledge of one spectrum corresponding to symmetric BCs (i.e.
a1b2 + a2b1 = 0), [1].
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The latter is the problem that we shall consider in this paper. It is known that, if q 2 L2[0,p], the kth eigenvalue of (1)–(3)
behaves asymptotically as

kk ¼ kkðqÞ ¼ lk þ qþ dkðqÞ; ð5Þ

where lk = O(k2) depends only on the BCs of the SLP, q ¼ 1
p

R p
0 qðxÞdx and fdkðqÞg1k¼1 2 ‘

2, [4]. This implies that, in addition to
(4), the information concerning the variation of q for the symmetric problem are contained in the small terms dk(q).

Obviously, in the practice, the set of known eigenvalues is finite and usually consists of the first M ones. The matrix meth-
ods are therefore well-suited for the solution of inverse SLPs and among them the three-point scheme and the Numerov
method are the most popular ones. In general, the matrix methods are based on the use of finite difference or finite element
methods for the solution of ODEs over an assigned partition of [0,p] frequently composed by:

xi ¼ ih; i ¼ 0;1; . . . ;N þ 1; h ¼ p
N þ 1

: ð6Þ

When applied for solving direct SLPs, such methods replace the continuous problem with a generalized matrix eigenvalue
one of the form

AðqÞyðhÞ ¼ kðhÞSðqÞyðhÞ: ð7Þ

Here k(h) is the approximation of one of the exact eigenvalues, y(h) the corresponding numerical eigenfunction and the square
matrices A(q) and S(q), besides the potential q, depend on the particular method and on the BCs of the SLP. As well-known the
accuracy of the approximation kðhÞk of kk deteriorates significantly for increasing values of the index k so that the discretiza-
tion error of a matrix method inevitably swamps the term dk(q) in (5) with the exception of the first few indices. The appli-
cation of the asymptotic (or algebraic) correction technique, introduced in [5,6] for the three-point formula and in [7–9] for
the Numerov method, allows to greatly improve such eigenvalue estimates. It is based on the observation that the leading
term in the discretization error is independent of the potential q. This has suggested to correct the estimate kðhÞk by adding to
it the term �ðhÞk ¼ kk;0 � kðhÞk;0 where kk,0 and kðhÞk;0 are the kth exact and numerical eigenvalues corresponding to the potential
q(x) � 0, respectively.

Among the first successful algorithms for the solution of symmetric inverse SLPs subject to Dirichlet BCs (DBCs from now
on) we mention the ones proposed in [10–12]. In particular, the method in [12] used the three-point scheme for which the
coefficient matrix A(q) in (7) is symmetric and tridiagonal while S(q) is the identity matrix. The number of meshpoints N in
(6) was set equal to the number M of known eigenvalues so that A(q) was of size M. An inverse matrix eigenvalue problem for
a centrosymmetric A(q) was then solved with the very important shrewdness, derived from the asymptotic correction tech-
nique, of taking kk � �ðhÞk as kth reference eigenvalue instead of simply kk for each k. From the knowledge of A(q) an approx-
imation qðhÞin of qin = (q(x1),q(x2), . . . ,q(xN))T was then easily computed. The defect of this method, however, was the use of the
entire numerical spectrum which even after the application of the asymptotic correction presents discretization error of or-
der O(1) in the largest eigenvalues.

A more reliable method for the same type of inverse SLP was then proposed in [13] which still used the three-point for-
mula but involved only the first half of the computed numerical eigenvalues. In this case, in fact, N was set equal to 2M and
the approximation qðhÞin of qin was computed by solving the system of nonlinear equations

kðhÞk � kk þ �ðhÞk ¼ 0; k ¼ 1;2; . . . ;M; ð8Þ

where kðhÞk ¼ kðhÞk ðqÞ ¼ kðhÞk qðhÞin

� �
represents the kth eigenvalue of A(q). By virtue of the symmetry condition (4), the constraint

qðhÞin ¼ bJqðhÞin was imposed on qðhÞin where bJ denotes the anti-identity matrix. The unknowns in (8) were therefore the first M

entries of qðhÞin and a modified Newton method was used for solving such system. The convergence properties of the latter
method were also studied in details in [13] for q ‘‘sufficiently” close to a constant.

A similar approach for solving symmetric inverse SLPs has been considered in [14,15] where the Numerov method has
been used in place of the three-point formula. Moreover, in [15] the treatment of the Neumann boundary conditions (NBCs
in the sequel) has been discussed. It must be said that while this extension is straightforward for the three-point method, the
same definitely does not happen for the Numerov one.

As final reference for the currently available numerical techniques for the problem under consideration, we mention the
one recently proposed in [16]. In this case the continuous problem is reformulated as a system of first order ODEs and a fam-
ily of Boundary Value Methods (BVMs) obtained from the Obrechkoff formulas in conjunction with the asymptotic correction
technique is applied for the solution of the direct problem (see also [17,18]). The resulting generalized eigenvalue problem
(7) has size 4M � 4 with N = 2M � 3 and the Newton method is used for solving (8).

In this paper, for the solution of the symmetric inverse problem, we consider the application of the BVMs introduced in
[19,20] for the direct one. These schemes are obtained as a generalization of the Numerov method and provide competitive
results with respect to the latter improved with the asymptotic correction technique. Moreover, in [20] a compact formula-
tion of the corresponding generalized eigenvalue problem (7) is given which covers all possible types of BCs (2) and (3). With
respect to the methods in [13–16], a relevant difference of our procedure is constituted by the fact that we look for an
approximation of the unknown potential of the form q(h)(x) = /(x,c(h)) where, for any c ¼ ðc1; c2; . . . ; cLÞT ; /ðx; cÞ ¼PL

j¼1cj/jðxÞ being f/jðxÞg
L
j¼1 a set of symmetric linearly independent functions. The chosen value of L usually depends on
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