Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/amc

On an integral-type operator between weighted-type spaces and Bloch-type spaces on the unit ball

Stevo Stević^{a,*}, Sei-Ichiro Ueki^b

^a Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia ^b Faculty of Engineering, Ibaraki University, Hitachi 316-8511, Japan

ARTICLE INFO

Keywords: Integral-type operator Weighted-type space Bloch-type space Boundedness Compactness Essential norm Unit ball

ABSTRACT

The boundedness and compactness of an integral-type operator, which has been recently introduced by the first author, between weighted-type spaces and Bloch-type spaces on the unit ball are studied here.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbb{B} = \{z \in \mathbb{C}^n : |z| < 1\}$ be the open unit ball in \mathbb{C}^n , \mathbb{D} the open unit disk in \mathbb{C} and $H(\mathbb{B})$ the class of all holomorphic functions on the unit ball. Let $z = (z_1, \ldots, z_n)$ and $w = (w_1, \ldots, w_n)$ be points in \mathbb{C}^n and $\langle z, w \rangle = \sum_{k=1}^n z_k \overline{w}_k$. For $f \in H(\mathbb{B})$ with the Taylor expansion $f(z) = \sum_{|\beta| \ge 0} a_\beta z^\beta$, let

$$\Re f(z) = \sum_{|\beta| \ge 0} \beta |a_{\beta}| z^{\beta}$$

be the radial derivative of *f*, where $\beta = (\beta_1, \beta_2, ..., \beta_n)$ is a multi-index, $|\beta| = \beta_1 + ... + \beta_n$ and $z^{\beta} = z_1^{\beta_1}, ..., z_n^{\beta_n}$. If *X* is a Banach space, then by B_X we denote the closed unit ball in *X*. Let μ be strictly positive continuous functions (weights) on the unit ball \mathbb{B} . A weight μ is called radial if $\mu(z) = \mu(|z|)$ for every $z \in \mathbb{B}$. Every radial weight μ which is nonincreasing with respect to |z| and such that $\lim_{|z|\to 1-0}\mu(z) = 0$ is called a *typical weight*.

The class of all $f \in H(\mathbb{B})$ such that

$$\|f\|_{H^{\infty}_{\mu}}=\sup_{z\in\mathbb{R}}\mu(z)|f(z)|<\infty,$$

where μ is a weight, is called the weighted-type space and is denoted by $H^{\infty}_{\mu}(\mathbb{B}) = H^{\infty}_{\mu}$. It is a Banach space with the norm $\|\cdot\|_{H^{\infty}_{\mu}}$. The little weighted-type space $H^{\infty}_{\mu,0}(\mathbb{B}) = H^{\infty}_{\mu,0}$ consists of all $f \in H(\mathbb{B})$ such that $\lim_{|z| \to 1-0} \mu(z)|f(z)| = 0$.

For a weight μ the associate weight $\tilde{\mu}$ ([3]) is defined as follows

$$\tilde{\mu}(z) = \frac{1}{\sup\{|f(z)| | f \in B_{H^{\infty}_{\mu}}\}} = \frac{1}{\|\delta_{z}\|_{(H^{\infty}_{\mu})^{*}}}, \quad z \in \mathbb{B},$$

* Corresponding author.

E-mail addresses: sstevic@ptt.rs (S. Stević), sei-ueki@mx.ibaraki.ac.jp (S.-I. Ueki).

^{0096-3003/\$ -} see front matter @ 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2010.08.045

where δ_z is the point evaluation at z. The associate weights are also continuous, $0 \le \mu \le \tilde{\mu}$ and for each $w \in \mathbb{B}$ there is an $f_w \in B_{H^{\alpha}_u}$ such that

 $|f_w(w)| = 1/\tilde{\mu}(w).$

If μ is typical, then the unit ball $B_{H^{\infty}_{\mu}}$ is the closure of $B_{H^{\infty}_{\mu 0}}$ for the compact open topology. Hence

$$\tilde{\mu}(z) = \frac{1}{\sup\{|f(z)| | f \in B_{H^{\infty}_{\mu,0}}\}}$$

and consequently for each $w \in \mathbb{B}$ there is an $f_w \in B_{H^{\infty}_{\mu,0}}$ such that $|f_w(w)| = 1/\tilde{\mu}(w)$. Of some special interest are weights μ such that $\tilde{\mu} = \mu$ (see, e.g. [2]).

The Bloch-type space $\mathcal{B}_{\mu}(\mathbb{B}) = \mathcal{B}_{\mu}$ consists of all $f \in H(\mathbb{B})$ such that

$$b_{\mu}(f) = \sup_{z \in \mathbb{R}} \mu(z) |\Re f(z)| < \infty,$$

where μ is a weight. The little Bloch-type space $\mathcal{B}_{\mu,0}(\mathbb{B}) = \mathcal{B}_{\mu,0}$ consists of all $f \in H(\mathbb{B})$ such that

$$\lim_{z \to 1} \mu(z) |\Re f(z)| = 0.$$

Both spaces \mathcal{B}_{μ} and $\mathcal{B}_{\mu,0}$ are Banach with the norm $||f||_{\mathcal{B}_{\mu}} = |f(0)| + b_{\mu}(f)$, and $\mathcal{B}_{\mu,0}$ is a closed subspace of \mathcal{B}_{μ} . Various Bloch-type spaces can be found, e.g. in [11,18,28,34,36].

A positive continuous function μ on the interval [0,1) is called normal ([13]) if there is $\delta \in [0,1)$ and a and b, 0 < a < b such that

$$\frac{\mu(r)}{(1-r)^a} \quad \text{is decreasing on } [\delta, 1) \text{ and } \lim_{r \to 1} \frac{\mu(r)}{(1-r)^a} = 0;$$
$$\frac{\mu(r)}{(1-r)^b} \quad \text{is increasing on } [\delta, 1) \text{ and } \lim_{r \to 1} \frac{\mu(r)}{(1-r)^b} = \infty;$$

If we say that a function $\mu : \mathbb{B} \to [0,\infty)$ is normal we also assume that it is radial.

Let φ be a holomorphic self-map of \mathbb{B} . For $f \in H(\mathbb{B})$ the composition operator is defined by

 $C_{\varphi}f(z) = f(\varphi(z)), \quad z \in \mathbb{B},$

see, for example, [11,12,18,25,32] and the references therein.

In [20] the first author of this paper has extended products of integral and composition operators on $H(\mathbb{D})$ previously introduced by him and S. Li (see [8,10], as well as closely related operators in [7]) in the unit ball settings as follows (see also [23,26,30]). Assume $g \in H(\mathbb{B})$, g(0) = 0 and φ is a holomorphic self-map of \mathbb{B} , then we define an operator on the unit ball as follows

$$P_{\varphi}^{g}(f)(z) = \int_{0}^{1} f(\varphi(tz))g(tz)\frac{dt}{t}, \quad f \in H(\mathbb{B}), \ z \in \mathbb{B}.$$
(1)

In this paper we continue to study operator P_{φ}^{g} by investigating the boundedness and compactness of the operator between the weighted-type spaces and the Bloch-type spaces. Results in Section 3 are closely related to those on weighted composition operators ([12]). Since there are some differences we will give more or less detailed proofs of our results in this section. In Section 4 we characterize the boundedness and compactness of $P_{\varphi}^{g} : \mathcal{B}_{\mu}(\text{or } \mathcal{B}_{\mu,0}) \to H_{\nu}^{\infty}(\text{or } H_{\nu,0}^{\infty})$. For some results on related integral-type operators in \mathbb{C}^{n} , see, e.g., [1,4–6,9,14–17,19,21,22,24,27,29,31,33–35,37] and the references therein.

2. Auxiliary results

In this section we quote several lemmas which are used in the proofs of the main results. The following lemma was proved in [20].

Lemma 1. Assume that φ is a holomorphic self-map of \mathbb{B} , $g \in H(\mathbb{B})$ and g(0) = 0. Then for every $f \in H(\mathbb{B})$ it holds

 $\Re[P^{g}_{\varphi}(f)](z) = f(\varphi(z))g(z).$

The next characterization of compactness is proved in a standard way (see, e.g., the proofs of the corresponding lemmas in [6,15,16]), hence we omit its proof.

Lemma 2. Assume that φ is a holomorphic self-map of \mathbb{B} , $g \in H(\mathbb{B})$, g(0) = 0, and v and μ are weights. Let X and Y be one of the following spaces H_v^{∞} , $H_{v,0}^{\infty}$, \mathcal{B}_{μ} , $\mathcal{B}_{\mu,0}$. Then the operator $P_{\varphi}^{g} : X \to Y$ is compact if and only if for every bounded sequence $(f_k)_{k \in \mathbb{N}} \subset X$ converging to 0 uniformly on compacts we have

 $\lim_{k\to\infty}\|P^{\mathsf{g}}_{\varphi}f_k\|_{Y}=\mathbf{0}.$

The following result is well-known (see, e.g. [1,4]).

Download English Version:

https://daneshyari.com/en/article/4631212

Download Persian Version:

https://daneshyari.com/article/4631212

Daneshyari.com