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a b s t r a c t

More general Euler–Painlevé equations are exactly linearized using generalized Cole–Hopf
transform and are shown to admit exact solutions in terms of Kummer functions. The
asymptotic behaviours of Euler–Painlevé equations are also derived.
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1. Introduction

Sachdev and his collaborators [9–11] have introduced Euler–Painlevé equations (EPEs) as self-similar reductions of gen-
eralized Burges equations (GBEs). They have found approximate analytical solutions by discarding the nonlinear terms in the
EPEs.

Recently Mayil Vaganan and Senthilkumaran [6] have found exact, explicit solutions of EPEs in term of Kummer functions
by exactly linearizing the EPE using a generalization of Cole–Hopf [3,4] transformation. Indeed they linearized the EPE
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2 þ 2c3
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to the Kummer equation
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through a generalization of Cole–Hopf transformation
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where c1 is the constant of integration.
Generally EPEs do not have solutions expressible in terms of known functions. EPEs seem to be analytically much nicer

than the Painlevé equations and in the physically interesting cases do not exhibit any singularities. The scope of the EPEs is
considerably enlarged by juxtaposing them with a large number nonlinear differential equations acquired by Kamke [5] and
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Murphy [7] from different sources and applications. It would seem, therefore, that the EPEs have a larger role to play in a
variety of physical applications than would be suggested by generalized Burgers equations alone.

The purpose of the present paper is to determine exact, explicit solutions for a few more EPEs using the same technique of
exact linearization through generalized Cole–Hopf transformations. The EPEs to be studied here are
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which are obtained as similarity reductions by applying the Lie’s classical method to the GBEs
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The scheme of the paper is as follows: Section 2 deals with the exact solution of the EPEs (1.5)–(1.9). The conclusion of the
present work is set forth in Section 3.

2. Exact solutions of Euler–Painlevé equations

We organise this section into three Subsections 2.1–2.3. In 2.1, we work with the EPEs (1.5)–(1.7). Sections 2.2 and 2.3
respectively deals with (1.8) and (1.9).

2.1. EPEs (1.5)–(1.7)

An application of Lie’s classical method [2,8] to (1.10) results in the following three reductions:
Reduction-1:
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where a2, a4 are real constants. Using (2.1) and (2.2) in (1.10), we obtain

af 00 � aa2zf 0 � 2ff 0 � aa2f ¼ 0: ð2:3Þ

Now the transformation f = H�1 replaces (2.3) by the EPE
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Integration of (2.4) gives

aH0 þ aa2zH þ 1� c1H2 ¼ 0; ð2:5Þ

where c1 is constant of integration.
Now using the transformation
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we replace (2.5) by the Kummer equation for g(f), viz.,
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Two linearly independent solutions of Eq. (2.7) are
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where M and U are Kummer functions.
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