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a b s t r a c t

The Adomian decomposition method (ADM) is employed in this paper to investigate the
free vibrations of a stepped Euler–Bernoulli beam consisting of two uniform sections. Each
section is considered a substructure which can be modeled using ADM. By using boundary
condition and continuity condition equations, the dimensionless natural frequencies and
corresponding mode shapes can be easily obtained simultaneously. The computed results
for different boundary conditions, step ratios and step locations are presented. Comparing
the results using ADM to those given in the literature, excellent agreement is achieved.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Stepped beam-like structures are widely used in various engineering fields, such as for robot arms, in tall buildings, etc.
The free vibration analysis of stepped beams has been investigated by many researchers [1–8] with great success. Numerical
methods such as finite element [1,2], finite difference [3] and differential quadrature [4] or analytical methods based on
fourth order differential equations [5–8] have been used in solving free vibration problems of such structures. Refs. [5,7] give
an exhaustive literature survey on the free vibration analysis of stepped beams.

In this paper, a relatively new computed approach called the Adomian decomposition method [9–14] is used to analyze
the free vibration problem for a stepped beam consisting of two uniform sections with arbitrary boundary conditions. The
Adomian decomposition method (ADM) is a useful and powerful method for solving linear and nonlinear differential equa-
tions. The goal of ADM is to find the solution of linear and nonlinear, ordinary or partial differential equation without depen-
dence on any small parameter as is the case with the perturbation method. In ADM the solution is considered as a sum of an
infinite series, and rapidly converges to an accurate solution [10]. Recently, ADM has been applied to the problem of vibra-
tion of structural and mechanical systems [11–15].

Using the ADM, the governing differential equation for each section of the stepped beam becomes a recursive algebraic
equation. The boundary conditions and continuity conditions become simple algebraic frequency equations which are suit-
able for symbolic computation. Thereafter, after some simple algebraic operations on these frequency equations, we can ob-
tain the natural frequency and corresponding closed-form series solution of the mode shape simultaneously. Finally, some
numerical examples are given to demonstrate the feasibility of the proposed method.

2. ADM for a stepped beam

Consider the free vibration of a straight Euler–Bernoulli beam consisting of two uniform sections elastically restrained at
both ends, as shown in Fig. 1. The stepped beam is divided into two sections with the two mirror systems of reference x1 and
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x2. The positive direction of the spatial coordinate x1 is defined in the direction to the right for Section 1, and x2 is defined in
the direction to the left for Section 2.

The partial differential equation describing the free vibration in each section is as follows

@4wjðxj; tÞ
@x4

j

þ mj

EjIj

@2wjðxj; tÞ
@t2 ¼ 0 xj 2 ½0 Lj� ðj ¼ 1;2Þ; ð1Þ

where subscript j = 1 and 2 denote Sections 1 and 2 of the stepped beam, respectively. Ej is Young’s modulus, Ij is the cross-

sectional moment of inertia of the beam Ij ¼
bjh

3
j

12 ; mj ¼ qjbjhj is the mass per unit length. And Lj, bj, hj and qj is the length,

width, thickness and density of each section.
According to modal analysis approach (for harmonic free vibration), the wj(xj, t) can be separated in space and time:

wjðxj; tÞ ¼ UjðxjÞeixt ; ð2Þ

where Uj(xj) and x are the structural mode shape and the natural frequency, respectively. i ¼
ffiffiffiffiffiffiffi
�1
p

.
Substituting Eq. (2) into (1) and separating variables for time t and space xj, the ordinary differential equation for each

section of the stepped beam can be obtained
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Eq. (3) can be rewritten in dimensionless form,
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where
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Clearly,
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where l ¼ m2
m1

E1 I1
E2 I2

; X1 is the dimensionless natural frequency, and the nth natural frequency is denoted as X1(n).

According to ADM [9–14], Uj(Xj) in Eq. (5) can be expressed in terms of an infinite series

UjðXjÞ ¼
X1
m¼0

U½m�j ðXjÞ; ð6Þ

where the component function U½m�j ðXjÞ will be determined recurrently.

Imposing a linear operator G ¼ d4

dX4, the inverse operator of G is then a 4-fold integral operator defined by

G�1 ¼
Z Z Z Z

ð. . .ÞdXdXdXdX ð7Þ

Fig. 1. The coordinate system for a stepped beam, elastically restrained at both ends.
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