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a b s t r a c t

A numerical method for solving the generalized (retarded or advanced) pantograph equa-
tion under initial value conditions is presented. To display the validity and applicability of
the numerical method four illustrative examples are presented. The results reveal that this
method is very effective and highly promising when compared with other numerical meth-
ods, such as Adomian decomposition method, spline methods and Taylor method.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Functional–differential equations with proportional delays are usually referred as pantograph equations or generalized
equations. The name pantograph originated from the study [1] by Ockendon and Tayler. These equations arise in industrial
applications and in studies based on biology, economy, control theory and electrodynamics, among others.

Properties of the analytic solution of these equations as well as numerical methods have been studied by several authors
[2–4].

In recent years, there has been a growing interest in the numerical treatment of pantograph equations of the retarded and
advanced type. A special feature of this type is the existence of compactly supported solutions [5]. Pantograph equations are
characterized by the presence of a linear functional argument and play an important role in explaining many different phe-
nomena. In particular they turn out to be fundamental when ODEs-based model fail. This phenomena is studied in [6–8], and
has direct applications to approximation theory and wavelets [9–11].

One of the newest analytical methods to solve the mathematical problems is using both homotopy and perturbation
methods. By means of generalizing the traditional homotopy method; more details about homotopy technique and its appli-
cations are found in literature [12,13]. In recent years, the applications of the homotopy perturbation method (HPM) in non-
linear problems have been devoted by scientists and engineers [14–26]. This paper, applies the HPM to the discussed
problem.

2. Basic idea of HPM

To convey an idea of the HPM, we consider a general equation of the type:

AðuÞ � f ðrÞ ¼ 0; ð2:1Þ

with boundary conditions
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¼ 0; r 2 C; ð2:2Þ

where A(u) is defined as follows:
AðuÞ ¼ LðuÞ þ NðuÞ: ð2:3Þ

Homotopy perturbation structure is shown as the following equation:

Hðv ; eÞ ¼ LðvÞ � Lðu0Þ þ eLðu0Þ þ e½NðvÞ � f ðrÞ� ¼ 0; ð2:4Þ

where

vðr; eÞ : X� ½0;1� ! R:

Obviously, using Eq. (2.4) we have

Hðv ;0Þ ¼ LðvÞ � Lðu0Þ ¼ 0; and Hðv ;1Þ ¼ AðvÞ � f ðrÞ; ð2:5Þ

where e 2 [0,1] is embedding parameter and u0 is the first approximation that satisfies the boundary condition. The process
of changes in e from zero to unity is that of v(r,e) changing from u0 to u(r). We consider v, as following:

v ¼
X1
i¼0

eiv i ¼ v0 þ ev1 þ e2v2 þ � � � ; ð2:6Þ

and the best approximation for solution is

u ¼ lim
e!1

v ¼ lim
e!1

X1
i¼0

eiv i ¼ v0 þ v1 þ v2 þ � � � ð2:7Þ

The convergence of the method is discussed in studies [14,17].

3. Numerical examples

In this section, several numerical examples are given to illustrate the properties of the method and all of them are per-
formed on the computer using a program written in Maple10.

Example 1. Let us first consider the equation (see [8])

u0ðxÞ ¼ 1
2

e
x
2u

x
2

� �
þ 1

2
uðxÞ; 0 6 x 6 1; uð0Þ ¼ 1; ð3:1Þ

which has the exact solution u(x) = ex.
By HPM, we may choose a convex homotopy such as the H(u,p) with components

Hðu;pÞ ¼ u0ðxÞ � p
1
2

e
x
2u

x
2

� �
þ 1

2
uðxÞ

� �
¼ 0: ð3:2Þ

Substituting (2.6) into (3.2), and equating the terms with identical powers of p, we have

p0 : u00ðxÞ ¼ 0; u0ð0Þ ¼ 1; ð3:3Þ

pk : u0kðxÞ ¼
1
2

e
x
2uk�1

x
2

� �
þ 1

2
uk�1ðxÞ; ukð0Þ ¼ 0: ð3:4Þ

Therefore, the approximate solution of Example 1 can be readily obtained by

uðtÞ ¼
X1
k¼0

ukðxÞ: ð3:5Þ

In practice, all terms of series (3.5) cannot be determined and for this reason, we use an approximation of the solution by the
following truncated series:

umðxÞ ¼
Xm�1

k¼0

ukðxÞ: ð3:6Þ

Using the above iteration formulas (3.3) and (3.4), we can directly obtain the other components as follows

u0ðxÞ ¼ 1; ð3:7Þ

u1ðxÞ ¼
1
2

ex þ 1
2

x� 1; ð3:8Þ

u2ðxÞ ¼
2
3

e
3
4x þ 1

4
e

1
2xx� 1

2
e

1
2x þ 1

8
x2 � 1

2
x� 1

6
; ð3:9Þ
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