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a b s t r a c t

In comparison to single antenna systems, a wireless multiple-input multiple-output (MIMO) system pro-
vides higher throughput at no additional cost of bandwidth, but the high complexity of the detection
algorithms poses a major challenge to the hardware implementation. Maximum likelihood (ML) MIMO
detection guarantees optimal performance but implies huge processing complexity, which makes accept-
able this approach only when the number of transmitting antennas is low and the adopted modulation
scheme has a small cardinality. Sphere decoding (SD) is an efficient method that significantly reduces
the average processing complexity with no performance penalty.

Most of known sphere decoders have been implemented as application specific integrated circuits
(ASICs), but the need for high degree of flexibility in MIMO detection makes interesting also application
specific instruction set processor (ASIP) implementations. A single programmable ASIP can hardly reach
the same processing speed as a fully dedicated ASIC; thus, parallel architectures with multiple concurrent
ASIPs must be conceived to guarantee sufficient data throughput.

The objective of this paper is to present a new ASIP-based implementation for the detection of MIMO
signals. The processor supports multiple lattice modulation schemes (up to 64-QAM) and up to four
transmitting antennas and it is able to run both ML and close to ML algorithms. A parallel architecture
has been also designed with multiple ASIPs, which concurrently execute the detection algorithm on
received symbols, a central unit acting as task scheduler, and a buffer for the compensation of non con-
stant throughput. A dedicated bus handles the communication among allocated units. Each ASIP occupies
a silicon area of 0.093 mm2 and runs at 400 MHz when implemented on a 90 nm CMOS technology.
Achievable throughput depends on the adopted MIMO system and on the number of allocated ASIPs: a
detector with 10 ASIPs programmed to run ML detection on a 4 � 4 MIMO system with 64-QAM modu-
lation offers a throughput of 78 Mbps at signal-to-noise ratio SNR = 18 dB.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Multiple-input multiple-output (MIMO) systems [1] are digital
transmission systems with more than one transmitting and receiv-
ing antenna. Such systems, in combination with space-time codes,
offer both multiplexing capabilities and transmit diversity, which
can be exploited to achieve increased channel capacity and robust-
ness against multipath fading channels. On the receiver side each
antenna receives a linear combination of transmitted symbols. Pro-
vided that the receiver is able to reconstruct the originally sent
information from received signals, such systems have the potential
to multiply the achievable data rate by the number of transmitting
antennas at no cost of additional bandwidth. MIMO systems are

also known to be able to increase the robustness to combat the fad-
ing in wireless channels.

The drawback of MIMO systems is the computational complex-
ity required to perform the detection of the originally transmitted
symbols, which is the task implemented by MIMO detectors. In the
direct implementation of maximum likelihood (ML) detection, the
computational complexity grows exponentially with the order of
the system, which depends on the size of the selected constellation
and on the number of antennas. Therefore, computationally effi-
cient algorithms are required to achieve acceptable bit rates in
the detection process, especially for high order MIMO systems.
Sphere decoding (SD) techniques [2] are a class of efficient detec-
tion algorithms that solve the ML problem with polynomial aver-
age complexity in the rate [3]. SD techniques are based on the
association of all the possible transmitted vectors to the leaves of
a decision tree, but each SD algorithm is different in terms of
tree structure and exploring procedure. Since all modern high
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performance receivers include iterative soft-input soft-output
channel decoders, soft-output detection on MIMO channels is also
required [4]. Thus, several SD algorithms have been extended to
provide soft-output information instead of hard bits.

This paper mainly deals with depth-first algorithms, both hard-
output (HO) and soft-output (SO), as the ones presented in [5,6]
respectively. The aim of the paper is to present a new implementa-
tion of these algorithms based on an array of application specific
instruction set processors (ASIPs) [7]. Each ASIP is optimized to
perform the SD on a single vector symbol, and the parallelization
is required to achieve acceptable throughput level.

The proposed system also includes a central processor (CP) that
works as scheduler, assigning the received symbols to the allocated
ASIPs and retrieving the results from them. The scheduling policies
employed in the CP are crucial to find practical solutions to the
main problem of the SD: its non-constant throughput. This paper
covers the ASIP structure and the proposed scheduling policies as
well. Notice that the CP has been implemented only on a behav-
ioral level, while the ASIP has been fully synthesized for both FPGA
and CMOS standard cell technologies.

The rest of the paper is organized as follows. The MIMO model
and the sphere decoding algorithms are introduced in Section 2 to-
gether with the notation used in the paper. Section 3 introduces
the designed ASIP architecture, while the structure of the multi-
ASIP system and the adopted scheduling policies are detailed in
Section 4. Simulation results are given in Section 5, where the ef-
fects of different architectural choices are evaluated in terms of
throughput and BER (bit error rate) performance. Section 6 pro-
vides ASIP synthesis results as well as comparisons with other SD
implementations. Finally, conclusions are drawn in Section 7.

2. Depth first sphere decoding

This section briefly introduces HO and SO algorithms that em-
ploy the depth-first sphere decoding. A complete derivation can
be found in [5,6].

2.1. MIMO link model

Let us consider a MIMO channel with MT transmitting antennas
and MR receiving antennas. The same carrier signal is used for
every transmitting antenna, each of which transmits synchro-
nously a different digital symbol belonging to the constellation
O. Let s be the vector of the complex transmitted symbols (one en-
try for each transmitting antenna) and y the vector of the complex
received signals (one entry for each receiving antenna). Then, the
model of the channel is given by:

y ¼ Hsþ n with s 2 OMT ð1Þ

where H is the channel matrix (MR �MT) and n is a vector of inde-
pendent complex gaussian random variables with variance N0/2,
which models the noise at the receiver. The purpose of sphere
decoding is to find the most likely vector symbol ŝ, i.e. the one that
minimizes the Euclidean distance from y:

ŝ ¼ arg min
s2OMT

dðsÞ ¼ arg min
s2OMT

ky �Hsk2 ð2Þ

2.2. Preprocessing and decision trees

A required preliminary step in sphere decoding is QR decompo-
sition, which is a method to triangularize the MR �MT matrix H [8]:

H ¼ QR ð3Þ

where R is a MT �MT upper triangular matrix, while Q is a MR �MT

matrix with orthonormal columns.

Using this decomposition, a squared euclidean distance (ED)
d(s) can be associated to each symbol vector s:

dðsÞ ¼ c þ kŷ � Rsk2 ð4Þ

where ŷ ¼ Q Hy ¼ RsZF , the superscript (�)H stands for the Hermitian
transpose, sZF is the zero-forcing solution [5] and c ¼ kyk2 � kŷk2 is
a constant with respect to the symbol s. The problem described by
(2) is then equivalently formulated as the problem of finding the s
symbol with the minimum ED. It is worth noticing that constant c
does not influence the metric computation expressed in (2) and will
then be omitted from now on.

We introduce now the partial symbol vector s(i), defined as:

sðiÞ , ½si; siþ1; . . . ; sMT �
0 ð5Þ

where [�]0 indicate a transposed vector. These partial symbols can be
organized in a tree [5], where i = MT is the level of the tree root, i = 1
is the level of tree leaves, and each possible value of partial symbol
s(i) is associated to one node at level i. A node at level i inherits from
its parent at the upper level i � 1 the corresponding partial symbol
s(i�1) and obtains s(i) by appending one more vector element, corre-
sponding to a specific choice for si.

The leaves of the tree are all the possible s 2 OMT . Therefore ED
values d(s) are associated to tree leaves, while intermediate tree
nodes can be associated to partial euclidean distances (PED) Ti(s(i)).
PEDs can be additively updated when moving from the root to-
wards the leaves of the tree:

TMTþ1ð�Þ , 0

TiðsðiÞÞ , Tiþ1ðsðiþ1ÞÞ þ jeiðsðiÞÞj2
ð6Þ

with i = MT,MT � 1, . . . ,1; amounts jei(s(i))j2 are called distance
increments:

jeiðsðiÞÞj2 ¼ ŷi �
XMT

j¼i

Rijsj

�����
�����

2

¼ jwiþ1ðsðiþ1ÞÞ � Riisij2 ð7Þ

where

wiþ1ðsðiþ1ÞÞ ¼ ŷi �
XMT

j¼iþ1

Rijsj ð8Þ

From (6) it is evident that the PED of a node is larger than the
one of its parent node, and this property is exploited to achieve
an efficient tree exploration. For example, to explore only leaves
such that d(s) < r, with a certain r (called sphere constraint), we
can prune the tree under an intermediate node whose PED violates
the constraint, so reducing the number of searched nodes, with no
penalty in terms of quality of the found solution.

2.3. Hard output SD

By exploring the tree in a depth first way, we can determine the
leaf with the smaller ED, which corresponds to the ML solution.
The result is given by the bits associated to the found leaf, hence
this algorithm provides output sequences of zeros and ones (hard
bits) without any information on the reliability of the detected bits.

During tree exploration, when a leaf is reached with ED value
smaller than previously calculated, the constraint on the sphere ra-
dius is updated, so as the search space is reduced to all tree nodes
with PED lower that the current radius. This allows pruning the
tree without the risk of eliminating the ML solution. In exploring
the sons of a node, the Schnorr–Euchnerr (SE) enumeration [9]
can be used: in this approach, the sons are explored in ascending
order of their PEDs. In the SE enumeration, the first explored node

246 M. Tamagnone et al. / Microprocessors and Microsystems 36 (2012) 245–256



Download	English	Version:

https://daneshyari.com/en/article/463127

Download	Persian	Version:

https://daneshyari.com/article/463127

Daneshyari.com

https://daneshyari.com/en/article/463127
https://daneshyari.com/article/463127
https://daneshyari.com/

