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a b s t r a c t

Periodic travelling waves (wavetrains) are an important solution type for many partial dif-
ferential equations. In this paper I review the use of numerical continuation for studying
these solutions. I discuss the calculation of the form and stability of a given periodic trav-
elling wave, and the calculation of boundaries in a two-dimensional parameter plane for
wave existence and stability. I also describe the automated implementation of these
numerical continuation procedures via the software package WAVETRAIN (http://www.ma.
hw.ac.uk/wavetrain). I conclude by discussing ongoing work on numerical continuation
methods for determining the absolute stability of periodic travelling waves.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Periodic travelling waves (wavetrains) are an important solution type for many partial differential equations (PDEs). They
play a fundamental role in the one-dimensional behaviour of self-oscillatory systems [1], for which the complex Ginzburg–
Landau equation is the prototype example [2], and they arise in a wide range of other equations including excitable systems
[3] and reaction–diffusion–advection equations [4]. As well as this fundamental mathematical role, periodic travelling waves
(PTWs) occur in many applications. In physics, PTWs play an important role in hydrodynamics [5–7] and solar cycles [8]. In
chemistry, travelling bands were observed in the Belousov–Zhabotinskii reaction more than 30 years ago [9] and are part
of the wide range of behaviours seen in oscillatory and excitable chemical reactions [10–12]. In ecology, PTWs have been iden-
tified in spatiotemporal data sets on a number of cyclic populations [13–15], and occur on a landscape scale in semi-arid
environments, where bands of vegetation moving slowly uphill on gentle slopes are a characteristic feature [16,17].

Like all travelling wave solutions, PTWs are functions of the single variable z = x � ct; here t and x are the time and (one-
dimensional) space coordinates, and c is the wave speed. This solution ansatz reduces the PDEs to an ordinary differential
equation (ODE) system, and a PTW is a limit cycle solution of these ODEs. However the limit cycle is typically unstable as an
ODE solution in both the positive and negative z directions, meaning that it cannot be calculated by direct numerical integra-
tion of the ODEs. The standard method for calculating a PTW solution is therefore numerical continuation: starting from a Hopf
bifurcation in the travelling wave equations, one follows the limit cycle branch until the required PTW solution is reached.
Extensions of this approach enable calculation of the regions of parameter space in which PTWs exist. Stability of a PTW can
also be determined via numerical continuation, using the method of Rademacher et al. [18] for computing the essential spec-
trum. In this paper, I will review these different applications of numerical continuation to the study of PTWs, illustrating my
remarks via the calculation of boundaries in parameter space for the existence and stability of PTWs in the Klausmeier model
for banded vegetation in semi-arid environments [19].
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Some of the methods that I will describe are relatively difficult to implement, even when using an established numerical
continuation program such as AUTO [20–23], and this has been a significant barrier to their wider use. In Section 4, I will de-
scribe a new software package called WAVETRAIN which uses AUTO to study PTW solutions in an easy-to-use automated way.

2. The Klausmeier model for banded vegetation

In semi-arid environments, vegetation is often self-organised into spatial patterns. A particularly striking manifestation of
this is vegetation banding on gentle slopes, in which stripes of grass, shrubs or trees run parallel to the contours, alternating
with regions of bare ground [16,17]. A number of mathematical models have been developed for banded vegetation, reflect-
ing the various ecological mechanisms that have been proposed. I will illustrate my discussion of the study of PTWs via the
Klausmeier model [19], which has the dimensionless form
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zffl}|ffl{plant
growth

� Bp
z}|{plant

loss
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This was the first PDE model to be proposed for banded vegetation; p and x are the densities of plant biomass and water,
respectively. The parameters A, B and m are dimensionless combinations of a number of ecological parameters, but can be
most conveniently interpreted as reflecting mean annual rainfall, plant loss including herbivory, and slope gradient, respec-
tively. A key component of (1) is the nonlinear term xp2, which reflects the fact that higher levels of organic matter in the
soil, and the presence of roots, increase the infiltration of rain water into the soil [24,25]. A detailed ecological appraisal of
the Klausmeier model is given in [26], and mathematical properties of the equations are discussed in [27–30]. Before pro-
ceeding, it is important to emphasise that (1) is only one of a number of different mathematical models for banded vegeta-
tion; Refs. [31–35] contain a selection of other models, and [36] reviews the modelling literature in this area.

Banded vegetation corresponds to spatial patterns of (1) that move in the positive x direction (uphill) at a constant speed,
that is, PTWs. Therefore it is important to understand the constraints on the parameters (A, B, m and wave speed) for PTW solu-
tions of (1) to exist, and for them to be stable.

3. Application of numerical continuation to periodic travelling waves

In this section, I will describe the basic uses of numerical continuation to study the form and existence (Section 3.1) and
stability (Section 3.2) of PTW solutions of the partial differential equations

@u=@t ¼ F u; @u=@x; @2u=@x2; . . .
� �

: ð2Þ

I will illustrate my remarks via the Klausmeier model (1); the results I will present on existence of PTWs for (1) have been
shown previously in [4], but those on wave stability are new. Throughout this section I will consider only typical, simple
behaviour, for which the Klausmeier model provides a good example for the parameter values considered. Moreover, to
avoid interfering with readability I will for the most part omit caveats about the possibility of more complicated cases.
Rather, in Section 5, I will describe various complications that can arise, and how they can be overcome.

3.1. Periodic travelling wave form and existence

Travelling wave solutions of (2) satisfy

c dU=dzþ F U;dU=dz;d2U=dz2
; . . .

� �
¼ 0 ð3Þ

where u(x,t) = U(z) with z = x � ct; c is the wave speed. As discussed in Section 1, a PTW is a limit cycle solution of (3). In simple
cases, the limit cycle branch containing this solution is monotonic in the parameters, and has at least one end terminating at
a Hopf bifurcation point. For example, Fig. 1 illustrates the branch of PTW solutions of (1) with speed c = 2, as a function of the
rainfall parameter A. The solution branch emanates from a Hopf bifurcation point at A � 2.78, and terminates at a homoclinic
solution at A � 0.32. To calculate a PTW solution for a value of A between these limits, one therefore begins by performing a
numerical continuation of the steady state, looking for the Hopf bifurcation point. One then switches to the limit cycle solu-
tion branch, and numerically continues this branch until the required value of A is reached.

PTW solutions depend on the parameters in the original PDEs (2) and also on the wave speed c. If PTW solutions exist for a
given set of PDE parameters, then they will do so for a range of values of c [1], with the value of c relevant to a particular PDE

solution depending on initial and boundary conditions. Therefore it is natural to consider PTW existence in a parameter plane
whose axes are the wave speed c and one of the PDE parameters, referred to henceforth as the ‘‘control parameter’’. For exam-
ples of PTW existence visualised in this way, see Refs. [4,39,40].
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